分析 (Ⅰ)先證明AB∥平面PCD,再利用線面平行的性質(zhì)定理證明AB∥EF;
(Ⅱ)由平面PAD⊥平面ABCD證明CD⊥平面PAD,從而證明CD⊥AF,再由CD∥EF證明AF⊥PD,AF⊥平面PCD,得出點(diǎn)B與點(diǎn)A到平面PCD的距離相等,PB與平面PCD所成角所成角正弦值為$\frac{AF}{PB}$.
解答 解:(Ⅰ)證明:因?yàn)榈酌鍭BCD是正方形,
所以AB∥CD;
又因?yàn)锳B?平面PCD,CD?平面PCD,
所以AB∥平面PCD;
又因?yàn)锳、B、C、D四點(diǎn)共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF;
(Ⅱ)在正方形ABCD中,CD⊥AD,
又因?yàn)槠矫鍼AD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以CD⊥平面PAD;
又AF?平面PAD 所以CD⊥AF,
由(Ⅰ)可知AB∥EF,
又因?yàn)锳B∥CD,所以CD∥EF,
由點(diǎn)E是棱PC的中點(diǎn),所以點(diǎn)F是棱PD的中點(diǎn);
在△PAD中,因?yàn)镻A=AD,所以AF⊥PD;
因?yàn)镻D∩CD=D,所以AF⊥平面PCD;
又點(diǎn)B與點(diǎn)A到平面PCD的距離相等,
所以PB與平面PCD所成角所成角正弦值為$\frac{AF}{PB}$=$\frac{{\sqrt{6}}}{4}$.
點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,是也考查了空間角的計(jì)算問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x3 | B. | f(x)=-|x+1| | C. | f(x)=ln$\frac{1-x}{1+x}$ | D. | f(x)=2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com