【題目】P為橢圓 + =1上一點,F(xiàn)1 , F2為左右焦點,若∠F1PF2=60°.
(1)求△F1PF2的面積;
(2)求P點的坐標.

【答案】
(1)解:由橢圓 + =1可知焦點在x軸上,a=5,b=3,c= =4,

焦點坐標為:F1(﹣,4,0),F(xiàn)2(4,0),

設丨PF1丨=m,丨PF2丨=n,則m+n=2a=10,

由余弦定理可知:m2+n2﹣2mncos60°=(2c)2

∴(m+n)2﹣2mn﹣2mncos60°=2c2,即100﹣2mn﹣mn=64,

則mn=12,

△F1PF2的面積S,S= mnsin60°= ×12× =3 ,

∴△F1PF2的面積3


(2)解:設P(x,y),由△F1PF2的面積S,S= ×2c×丨y丨=4丨y丨,

∴4丨y丨=3 ,

則丨y丨= ,y=± ,將y=± 帶入橢圓方程解得x=± ,

∴這樣的P點有四個,P點的坐標( ),(﹣ , ),

,﹣ ),(﹣ ,﹣ ).


【解析】(1)由橢圓的方程求得焦點坐標,根據(jù)余弦定理求得丨PF1丨丨PF2丨,則由三角形面積公式可知:S= 丨PF1丨丨PF2丨sin60°,即可求得△F1PF2的面積;(2)由焦點三角形的面積公式可知:S= ×2c×丨y丨=4丨y丨,由(1)可知4丨y丨=3 ,即可求得y的值,代入橢圓方程,即可求得x的值,求得P點的坐標.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|m﹣1≤x≤2m+3},函數(shù)f(x)=lg(﹣x2+2x+8)的定義域為B.
(1)當m=2時,求A∪B、(RA)∩B;
(2)若A∩B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2014年5月,北京市提出地鐵分段計價的相關意見,針對“你能接受的最高票價是多少?”這個問題,在某地鐵站口隨機對50人進行調(diào)查,調(diào)查數(shù)據(jù)的頻率分布直方圖及被調(diào)查者中35歲以下的人數(shù)與統(tǒng)計結(jié)果如下: (Ⅰ)根據(jù)頻率分布直方圖,求a的值,并估計眾數(shù),說明此眾數(shù)的實際意義;
(Ⅱ)從“能接受的最高票價”落在[8,10),[10,12]的被調(diào)查者中各隨機選取3人進行追蹤調(diào)查,記選中的6人中35歲以上(含35歲)的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.

最高票價

35歲以下人數(shù)

[2,4)

2

[4,6)

8

[6,8)

12

[8,10)

5

[10,12]

3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經(jīng)過點(0,1).
(1)求實數(shù)a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的有
①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;
②在△ABC中,若sin2A+sin2B=sin2C,則△ABC為直角三角形;
③若A,B為銳角三角形的兩個內(nèi)角,則tanAtanB>1;
④若Sn為數(shù)列{an}的前n項和,則此數(shù)列的通項an=Sn﹣Sn1(n>1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學生村官王善良落實政府“精準扶貧”精神,幫助貧困戶張三用9萬元購進一部節(jié)能環(huán)保汽車,用于出租.假設第一年需運營費用2萬元,從第二年起,每年運營費用均比上一年增加2萬元,該車每年的運營收入均為11萬元.若該車使用了n(n∈N*)年后,年平均盈利額達到最大值,則n等于(注:年平盈利額=(總收入﹣總成本)× )(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P為△ABC所在平面外一點,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,則H為△ABC的(
A.重心
B.垂心
C.外心
D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P為線段y=2x,x∈[2,4]上任意一點,點Q為圓C:(x﹣3)2+(y+2)2=1上一動點,則線段|PQ|的最小值為

查看答案和解析>>

同步練習冊答案