設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題,其中真命題的個(gè)數(shù)是

①若α⊥γ,β⊥γ,則α∥β

②若mα,nα,m∥β,n∥β,則α∥β

③若α∥β,lα,則l∥β

④若α∩β=l,β∩γ=m,γ∩α=n,l∥r,則m∥n

[  ]

A.1

B.2

C.3

D.4

答案:B
解析:

①垂直于同一平面的兩平面平行為假命題;②如果一個(gè)平面內(nèi)的兩條直線分別平行于另一個(gè)平面,那么這兩個(gè)平面平行為假命題;③如果兩個(gè)平面平行,那么在其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面為真命題;④由線面平行的性質(zhì)定理知該命題為真.故選B.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,l?α,則l∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中命題正確的是
②④
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若α∥β,l?α,則l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,則 m∥n;
④若α⊥γ,β⊥γ,則α∥β;
則其中所有正確命題的序號(hào)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確命題是
③④
③④
 (填寫序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c為兩兩不相等的實(shí)數(shù),求證:a2+b2+c2>ab+bc+ca;
(2)設(shè)a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步練習(xí)冊(cè)答案