正方體ABCD﹣A1B1C1D1中,E為線段B1D1上的一個(gè)動(dòng)點(diǎn),則下列結(jié)論中錯(cuò)誤的是(  )
A.AC⊥BE
B.B1E∥平面ABCD
C.三棱錐E﹣ABC的體積為定值
D.直線B1E⊥直線BC1
D
A.∵在正方體中,AC⊥BD,AC⊥DD1,BD∩DD1=D,
∴AC⊥面BB1D1D,
∵BE?面BB1D1D,
∴AC⊥BE,∴A正確.
B.∵B1D1∥平面ABCD,∴B1E∥平面ABCD成立.即B正確.
C.三棱錐E﹣ABC的底面△ABC為定值,錐體的高BB1為定值,∴錐體體積為定值,即C正確.
D.∵D1C1⊥BC1D1,∴B1E⊥直線BC1錯(cuò)誤.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),
.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方體的棱長為2,E、F分別是、的中點(diǎn),過、E、F作平面于G.
(l)求證:EG∥;
(2)求二面角的余弦值;
(3)求正方體被平面所截得的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面是邊長為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在體積為的正三棱錐中,長為,為棱的中點(diǎn),求

(1)異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△中,,,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與、分別相切于點(diǎn),與交于點(diǎn)),將△繞直線旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.

(1)求該幾何體中間一個(gè)空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,,,,若把繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積是(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案