設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切,點(diǎn)(n,Sn)在函數(shù)f(x)=x2+x的圖象上.
(Ⅰ)求an的表達(dá)式;
(Ⅱ)將數(shù)列{an}依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(Ⅲ)設(shè)An為數(shù)列的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式對(duì)一切都成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
解:(Ⅰ)點(diǎn)在函數(shù)上,.………1分 當(dāng)時(shí),.…………2分 當(dāng)時(shí),滿足..…………3分 (Ⅱ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1233/0020/3f2eb5521da65eef14078ddb935fb958/C/Image135.gif" width=52 height=24>(),所以數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循環(huán)記為一組.由于每一個(gè)循環(huán)含有4個(gè)括號(hào),故是第25組中第4個(gè)括號(hào)內(nèi)各數(shù)之和.由分組規(guī)律知,由各組第4個(gè)括號(hào)中所有第1個(gè)數(shù)組成的數(shù)列是等差數(shù)列,且公差為20.同理,由各組第4個(gè)括號(hào)中所有第2個(gè)數(shù)、所有第3個(gè)數(shù)、所有第4個(gè)數(shù)分別組成的數(shù)列也都是等差數(shù)列,且公差均為20.故各組第4個(gè)括號(hào)中各數(shù)之和構(gòu)成等差數(shù)列,且公差為80.注意到第一組中第4個(gè)括號(hào)內(nèi)各數(shù)之和是68, 所以.又=22,所以=2010.………………8分 (Ⅲ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1233/0020/3f2eb5521da65eef14078ddb935fb958/C/Image141.gif" width=93 height=45>,故, 所以. 又對(duì)一切都成立,即 對(duì)一切都成立.…………9分 設(shè),則只需即可. 由于,…10分 所以,故是單調(diào)遞減,于是.……12分 令,即, 解得,或. 綜上所述,使得所給不等式對(duì)一切都成立的實(shí)數(shù)存在,的取值范圍是.……………………………14分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
10 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
Sn |
5•2n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com