6.求值:tan(-$\frac{29π}{3}$)=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

分析 由條件利用誘導(dǎo)公式化簡所給的三角函數(shù)式,可得結(jié)果.

解答 解:tan(-$\frac{29π}{3}$)=tan(-10π+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等比數(shù)列中,已知a2a5=-32,a3+a4=4,且公比為整數(shù),則a10=512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定積分$\int_{-1}^1{({x^2}+sinx)dx}$的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))和圓x2+y2=R2交于A、B兩點(diǎn),則線段AB的中點(diǎn)坐標(biāo)為(  )
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.$(3,-\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦點(diǎn)為F,斜率為k(k>0)的直線經(jīng)過F并且與橢圓相交于點(diǎn)A,B.若5$\overrightarrow{AF}$=3$\overrightarrow{FB}$,則k的值為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若A(-1,2),B(0,-1),且直線AB⊥l,則直線l的斜率為( 。
A.-3B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知焦點(diǎn)在x軸上的橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),焦距為2$\sqrt{3}$,長軸長為4.直線l與橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:點(diǎn)O到直線AB的距離為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直角坐標(biāo)系原點(diǎn)與極坐標(biāo)系的極點(diǎn)重合,x的正半軸為極軸.直線l經(jīng)過點(diǎn)P(-1,1),直線的傾斜角α=$\frac{5π}{6}$,曲線C的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求$\overrightarrow{PA}$•$\overrightarrow{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(1,0),離心率e=$\frac{\sqrt{2}}{2}$,
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)過點(diǎn)(-1,0)的直線l與橢圓交于A、B兩點(diǎn),且|AB|=$\sqrt{2}$+1,求直線l的斜率.

查看答案和解析>>

同步練習(xí)冊答案