已知雙曲線為雙曲線的右焦點,點,軸正半軸上的動點。
的最大值為(   )
A.B.C.D.
C

試題分析:由題意知,設(shè),由三角形余弦定理可得

最大為
點評:將求的角轉(zhuǎn)化為三角形三邊表示,進而可看做求函數(shù)的最值點問題,其間用到了均值不等式求最值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點為,P是橢圓上一動點,如果延長F1PQ,使,那么動點Q的軌跡是(      )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點的直線與拋物線交于兩點,記線段的中點為,過點和這個拋物線的焦點的直線為,的斜率為,則直線的斜率與直線的斜率之比可表示為的函數(shù)        __   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是離心率為的橢圓上的一點,斜率為的直線交橢圓、兩點,且、三點不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別為橢圓的上、下焦點,其中也是拋物線的焦點,點在第二象限的交點,且

(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(1,3)和圓,過點的動直線與圓相交于不同的兩點,在線段取一點,滿足:,)。
求證:點總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長為,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(1)求橢圓及動圓圓心軌跡的方程;
(2) 在曲線上有兩點、,橢圓上有兩點,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,橢圓左右焦點分別為,上頂點為為等邊三角形.定義橢圓C上的點的“伴隨點”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CA、B兩點,若點A、B的“伴隨點”分別是PQ,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點O.橢圓C的右頂點為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2為雙曲線)的兩個焦點,若F1、F2、P(0,2)是正三角形的三個頂點,則雙曲線離心率是(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線x2=4py(p>0)與雙曲線有相同的焦點F,點A 是兩曲線的一個交點,且AF丄y軸,則雙曲線的離心率為
A,    B.    C.    D.

查看答案和解析>>

同步練習(xí)冊答案