A. | (-∞,-2) | B. | (-∞,0) | C. | (2,+∞) | D. | (1,+∞) |
分析 分類討論:當(dāng)a≥0時,容易判斷出不符合題意;當(dāng)a<0時,求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和極值之間的關(guān)系轉(zhuǎn)化為求極小值f($\frac{2}{a}$)>0,解出即可.
解答 解:當(dāng)a=0時,f(x)=-3x2+1=0,解得x=±$\frac{\sqrt{3}}{3}$,函數(shù)f(x)有兩個零點,不符合題意,應(yīng)舍去;
當(dāng)a>0時,令f′(x)=3ax2-6x=3ax(x-$\frac{2}{a}$)=0,解得x=0或x=$\frac{2}{a}$>0,列表如下:
x | (-∞,0) | 0 | (0,$\frac{2}{a}$) | $\frac{2}{a}$ | ( $\frac{2}{a}$,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
x | (-∞,$\frac{2}{a}$) | $\frac{2}{a}$ | ( $\frac{2}{a}$,0) | 0 | (0,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、分類討論的思想方法,考查了推理能力和計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-9,0] | B. | $[0,\frac{5}{3}]$ | C. | $[-9,\frac{5}{3}]$ | D. | $[0,\frac{5}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8064塊 | B. | 8066塊 | C. | 8068塊 | D. | 8070塊 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com