設(shè)函數(shù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則f(x)<0的解集是(  )
分析:利用函數(shù)是奇函數(shù)且在(0,+∞)內(nèi)是增函數(shù),得到函(-∞,0)上單調(diào)遞增,利用f(-3)=0,得f(3)=0,然后解不等式即可.
解答:解:∵f(x)是奇函數(shù),f(-3)=0,
∴f(-3)=-f(3)=0,解f(3)=0.
∵函數(shù)在(0,+∞)內(nèi)是增函數(shù),
∴當(dāng)0<x<3時(shí),f(x)<0.
當(dāng)x>3時(shí),f(x)>0,
∵函數(shù)f(x)是奇函數(shù),
∴當(dāng)-3<x<0時(shí),f(x)>0.
當(dāng)x<-3時(shí),f(x)<0,
則不等式f(x)<0的解是0<x<3或x<-3.
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性之間的關(guān)系,利用函數(shù)奇偶性的對(duì)稱(chēng)性,可解不等式的解集.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=
2a-1a+1
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對(duì)于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱(chēng)f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對(duì)于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱(chēng)f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)數(shù)學(xué)公式為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是________ (寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省徐州三中高三(上)月考數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=,則a的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省遂寧市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對(duì)于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱(chēng)f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是     (寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案