5.某租車公司給出的財務(wù)報表如下:
1014年(1-12月)1015年(1-12月)1016年(1-11月)
接單量(單)144632724012512550331996
油費(元)214301962591305364653214963
平均每單油費t(元)14.8214.49
平均每單里程k(公里)1515
每公里油耗a(元)0.70.70.7
有投資者在研究上述報表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計算公式為$T=\frac{t-ak}{ak}•100%$.
(1)分別計算2014,2015年該公司的空駛率的值(精確到0.01%);
(2)2016年該公司加強了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到11月30日,空駛率在2015年的基礎(chǔ)上降低了20個百分點,問2016年前11個月的平均每單油費和平均每單里程分別為多少?(分別精確到0.01元和0.01公里)

分析 (1)根據(jù)空駛率的計算公式為$T=\frac{t-ak}{ak}•100%$,帶入計算即可;(2)根據(jù)T2016的值,求出k的值,從而求出2016年前11個月的平均每單油費和平均每單里程.

解答 解:(1)${T_{2014}}=\frac{14.82-0.7×15}{0.7×15}•100%≈41.14%$,
${T_{2015}}=\frac{14.49-0.7×15}{0.7×15}•100%≈38.00%$,
∴2014、2015年,該公司空駛率分別為41.14%和38.00%.
(2)${t_{2016}}=\frac{653214963}{50331996}≈12.98$,T2016=38%-20%=18%.
由${T_{2016}}=\frac{12.98-0.7k}{0.7k}•100%≈18.00%⇒k=15.71$,
∴2016年前11個月的平均每單油費為12.98元,
平均每單里程為15.71km.

點評 本題考查了函數(shù)模型問題,考查代入求值,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若x∈R,則(1-|x|)(1+x)>0的解集是( 。
A.{x|0≤x<1}B.{x|x<0且x≠-1}C.{x|-1<x<1}D.{x|x<1且x≠-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若$b=\sqrt{7}$,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知球的半徑為R,若球面上兩點A,B的球面距離為$\frac{πR}{3}$,則這兩點A,B間的距離為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x,y∈R,則“|x|+|y|>1”的一個充分條件是( 。
A.|x|≥1B.|x+y|≥1C.y≤-2D.$|x|≥\frac{1}{2}$且$|y|≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,其中俯視圖是一個腰長為2的等腰直角三角形,側(cè)視圖是一個直角邊長為1的直角三角形,則該幾何體外接球的體積是( 。
A.36πB.C.$\frac{9}{2}π$D.$\frac{27}{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1的極坐標(biāo)方程為ρcosθ-ρsinθ+2=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),將曲線C2上的所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)變?yōu)樵瓉淼?\frac{3}{2}$倍,得到曲線C3
(1)寫出曲線C1的參數(shù)方程和曲線C3的普通方程;
(2)已知點P(0,2),曲線C1與曲線C3相交于A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$z=\frac{i}{1-i}$的共軛復(fù)數(shù)的模為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=|x+1|-m|x-2|.
(Ⅰ)若m=1,求函數(shù)f(x)的值域;
(Ⅱ)若m=-1,求不等式f(x)>3x的解集.

查看答案和解析>>

同步練習(xí)冊答案