【題目】直線與橢圓交于兩點(diǎn),已知 , ,若橢圓的離心率,又經(jīng)過點(diǎn)為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)當(dāng)時(shí),試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

【答案】(1);(2)定值1.

【解析】

(1)將點(diǎn)代入橢圓方程,結(jié)合雙曲線的離心率列方程,求得的值,即求得橢圓方程.(2)當(dāng)直線斜率不存在時(shí),求得三角形的面積為定值.當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,代入,化簡.然后通過計(jì)算三角形的面積,由此判斷三角形的面積為定值.

(1)∵

∴橢圓的方程為

(2)①當(dāng)直線斜率不存在時(shí),即

由已知 ,得

在橢圓上, 所以

,三角形的面積為定值.

②當(dāng)直線斜率存在時(shí):設(shè)的方程為

必須得到,

,∴

代入整理得:

所以三角形的面積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)和智能手機(jī)的普及與快速發(fā)展,許多可以解答各學(xué)科問題的搜題軟件走紅.有教育工作者認(rèn)為:網(wǎng)搜答案可以起到拓展思路的作用,但是對多數(shù)學(xué)生來講,容易產(chǎn)生依賴心理,對學(xué)習(xí)能力造成損害.為了了解網(wǎng)絡(luò)搜題在學(xué)生中的使用情況,某校對學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的學(xué)生中抽取了男、女學(xué)生各人進(jìn)行抽樣分析,得到如下樣本頻數(shù)分布表:

一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)區(qū)間

男生頻數(shù)

女生頻數(shù)

18

4

10

8

12

13

6

15

4

10

將學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題頻數(shù)超過次的行為視為“經(jīng)常使用網(wǎng)絡(luò)搜題”,不超過20次的視為“偶爾或不用網(wǎng)絡(luò)搜題”.

1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫,并判斷是否在犯錯誤的概率不超過%的前提下有把握認(rèn)為使用網(wǎng)絡(luò)搜題與性別有關(guān)?

經(jīng)常使用網(wǎng)絡(luò)搜題

偶爾或不用絡(luò)搜題

合計(jì)

男生

女生

合計(jì)

2)將上述調(diào)查所得到的頻率視為概率,從該校所有參與調(diào)查的學(xué)生中,采用隨機(jī)抽樣的方法每次抽取一個(gè)人,抽取人,記經(jīng)常使用網(wǎng)絡(luò)搜題的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,,且.

1)求證:數(shù)列不是等差數(shù)列;

2)是否存在整數(shù),使得對任意的都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF與直線 垂直,垂足為B,且點(diǎn)A是線段BF的中點(diǎn).

(I)求橢圓C的方程;

(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線MP與直線 交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

2)若函數(shù)上的最小值為3,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個(gè)長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度,行車道總寬度,側(cè)墻面高, ,弧頂高

)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求圓弧所在的圓的方程.

)為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計(jì)算車輛通過隧道的限制高度是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與橢圓交于兩點(diǎn),已知 , ,若橢圓的離心率,又經(jīng)過點(diǎn)為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)當(dāng)時(shí),試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓環(huán)形路上有均勻分布的四家工廠甲乙丙丁,每家工廠都有足夠的倉庫供產(chǎn)品儲存.現(xiàn)要將所有產(chǎn)品集中到一家工廠的倉庫儲存,已知甲乙丙丁四家工廠的產(chǎn)量之比為1235.若運(yùn)費(fèi)與路程運(yùn)的數(shù)量成正比例,為使選定的工廠倉庫儲存所有產(chǎn)品時(shí)總的運(yùn)費(fèi)最省,應(yīng)選的工廠是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓ab0)經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知A0,b),Ba,0),點(diǎn)P是橢圓C上位于第三象限的動點(diǎn),直線AP、BP分別將x軸、y軸于點(diǎn)M、N,求證:|AN||BM|為定值.

查看答案和解析>>

同步練習(xí)冊答案