(本小題12分)定義運(yùn)算:
(1)若已知,解關(guān)于的不等式
(2)若已知,對(duì)任意,都有,求實(shí)數(shù)的取值范圍。

((1);(2).

解析試題分析:(1)當(dāng)時(shí),根據(jù)定義有
所以原不等式的解集為                     
(2)依題意知                                 
因?yàn)閷?duì)任意,都有,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/59/3/1yxwe2.png" style="vertical-align:middle;" />的圖像開(kāi)口向下,對(duì)稱(chēng)軸為直線                
① 若,即,則為減函數(shù),
所以,解得,所以     
② 若,即,則
解得,所以                                   
③ 若,即,則為增函數(shù),
所以,解得,所以        
綜上所述,的取值范圍是                                
考點(diǎn):本題主要以新定義為背景,考查恒成立問(wèn)題.
點(diǎn)評(píng):對(duì)于此類(lèi)新定義問(wèn)題,學(xué)生要注意仔細(xì)審題,冷靜思考,新問(wèn)題的解決還是要靠“老知識(shí)”“老方法”,應(yīng)該有意識(shí)地運(yùn)用轉(zhuǎn)化思想,將新問(wèn)題轉(zhuǎn)化為我們熟知的問(wèn)題。對(duì)于恒成立問(wèn)題,要轉(zhuǎn)為為求最值來(lái)解決,分情況討論求最值時(shí),要做到不重不漏.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡(jiǎn):
(2)畫(huà)出函數(shù)上的圖像;
(3)證明:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,求函數(shù)= 的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/66/8/1cmex3.png" style="vertical-align:middle;" />,對(duì)于任意的,都有,且當(dāng)時(shí),,若.
(1)求證:為奇函數(shù);
(2)求證:上的減函數(shù);
(3)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)設(shè)定義域都為的兩個(gè)函數(shù)的解析式分別為,
(1)求函數(shù)的值域;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)已知函數(shù)
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在坐標(biāo)系中畫(huà)出該函數(shù)的圖像
(3)寫(xiě)出該函數(shù)的定義域,值域,奇偶性和單調(diào)區(qū)間(不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(I)求證:不論為何實(shí)數(shù)總是為增函數(shù);
(II)確定的值, 使為奇函數(shù);
(Ⅲ)當(dāng)為奇函數(shù)時(shí), 求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),()。
(1)設(shè),令,試判斷函數(shù)上的單調(diào)性并證明你的結(jié)論;
(2)若的定義域和值域都是,求的最大值;
(3)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案