已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(1)求等差數(shù)列的通項(xiàng)公式;
(2)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.
(1)或;(2)
【解析】
試題分析:本題考查等差等比數(shù)列的概念、通項(xiàng)公式、前項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí),考查化歸與轉(zhuǎn)化思想、分類討論思想,考查基本運(yùn)算能力.第一問,將已知寫成數(shù)學(xué)表達(dá)式,解方程得出和的值,利用等差數(shù)列的通項(xiàng)公式,直接寫出即可;第二問,由于第一問得到了2個(gè)通項(xiàng)公式,所以分情況驗(yàn)證是否都符合題意,經(jīng)檢驗(yàn),符合題意,將代入到中,將它轉(zhuǎn)化為分段函數(shù),去掉絕對(duì)值,分情況求和:,,,而符合的式子,所以總結(jié)得
試題解析:(1)設(shè)等差數(shù)列的公差為,則,,
由題意得:,解得或,
所以由等差數(shù)列通項(xiàng)公式可得:或,
故或.
(2)當(dāng)時(shí),分別為-1,-4,2,不成等比數(shù)列;
當(dāng)時(shí),分別為-1,2,-4,成等差數(shù)列,滿足條件.
故.
記數(shù)列的前項(xiàng)和為,當(dāng)時(shí),;當(dāng)時(shí),;
當(dāng)時(shí),
當(dāng)時(shí),滿足此式.
綜上,
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.等比中項(xiàng);3.數(shù)列求和;4.等差數(shù)列的前n項(xiàng)和公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(湖北理))已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(Ⅰ)求等差數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三下學(xué)期5月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(Ⅰ)求等差數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖北卷解析版) 題型:解答題
(本小題滿分12分)
已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(Ⅰ)求等差數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com