【題目】函數(shù)f(x)=3x-x3在區(qū)間(a2-12,a)上有最小值,則實數(shù)a的取值范圍是( )
A.(-1,3)
B.(-1,2)
C.(-1,3]
D.(-1,2]

【答案】D
【解析】由題知f′(x)=3-3x2 , 令f′(x)>0,解得-1<x<1;令f′(x)<0,解得x<-1或x>1,由此得函數(shù)在(-∞,-1)上是減函數(shù),在(-1,1)上是增函數(shù),在(1,+∞)上是減函數(shù),故函數(shù)在x=-1處取到極小值-2,判斷知此極小值必是區(qū)間(a2-12,a)上的最小值,∴a2-12<-1<a,解得-1<a< ,又當x=2時,f(2)=-2,故有a≤2.綜上知a∈(-1,2],
所以答案是:D.
【考點精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A是雙曲線 的右頂點,F(xiàn)(c,0)是右焦點,若拋物線 的準線l上存在一點P,使∠APF=30°,則雙曲線的離心率的范圍是(
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們可以用隨機模擬的方法估計 的值,如圖程序框圖表示其基本步驟(函數(shù) 是產(chǎn)生隨機數(shù)的函數(shù),它能隨機產(chǎn)生 內(nèi)的任何一個實數(shù)).若輸出的結(jié)果為 ,則由此可估計 的近似值為( )

A.3.119
B.3.124
C.3.132
D.3.151

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在一個坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測量該山坡相對于水平地面的坡角θ,在山坡的A處測得∠DAC=15°,沿山坡前進50m到達B處,又測得∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cosθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 中,點 在線段 上, , ,沿直線 翻折成 ,使點 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=- x3 x2+2ax在 上存在單調(diào)遞增區(qū)間,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)店和實體店各有利弊,兩者的結(jié)合將在未來一段時期內(nèi),成為商業(yè)的一個主要發(fā)展方向.某品牌行車記錄儀支架銷售公司從 月起開展網(wǎng)絡(luò)銷售與實體店體驗安裝結(jié)合的銷售模式.根據(jù)幾個月運營發(fā)現(xiàn),產(chǎn)品的月銷量 萬件與投入實體店體驗安裝的費用 萬元之間滿足 函數(shù)關(guān)系式.已知網(wǎng)店每月固定的各種費用支出為 萬元,產(chǎn)品每 萬件進貨價格為 萬元,若每件產(chǎn)品的售價定為“進貨價的 ”與“平均每件產(chǎn)品的實體店體驗安裝費用的一半”之和,則該公司最大月利潤是萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且 .
(Ⅰ)設(shè) ,求 的單調(diào)區(qū)間及極值;
(Ⅱ)證明:函數(shù) 的圖象在函數(shù) 的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 的參數(shù)方程為 為參數(shù)),直線 的參數(shù)方程為 為參數(shù)).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點 為曲線 上一點,求點 到直線 的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案