【題目】如圖,四棱錐P﹣ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
【答案】
(1)證明:由BE=PE,AB=PA,AE=AE,得△AEP≌△AEB,
∴∠EAB=60°,且AD⊥BE,
又∵AD⊥PE,
∴AD⊥平面PBE,
∵PB平面PBE,得AD⊥PB,
又AD∥BC,
∴PB⊥BC.
(2)解:如圖,過P作PO⊥平面ABCD,交BE延長線于O,
以O為坐標原點,過O作DA的平行線為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,
P(0,0, ),B(0, ,0),PB的中占點G(0, , ),連結(jié)AG,
又A(1, ,0),C(﹣2, ,0),由此得到 =(1,﹣ ,﹣ ),
=(0, ), =(﹣2,0,0),
∴ =0, =0,
∴ , ,
∵ 的夾角為θ等于所求二面角二面角A﹣PB﹣C的平面角,
∴cos = =﹣ .
∴二面角A﹣PB﹣C的余弦值為﹣ .
【解析】(1)推導出∠EAB=60°,且AD⊥BE,AD⊥PE,從而AD⊥平面PBE,進而AD⊥PB,由此能證明PB⊥BC.(2)過P作PO⊥平面ABCD,交BE延長線于O,以O為坐標原點,過O作DA的平行線為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,利用向量法能求出二面角二面角A﹣PB﹣C的余弦值.
【考點精析】掌握空間中直線與直線之間的位置關系是解答本題的根本,需要知道相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的右焦點為, 是雙曲線C上的點, ,連接并延長交雙曲線C與點P,連接,若是以為頂點的等腰直角三角形,則雙曲線C的漸近線方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),滿足,.
(1)求函數(shù)的解析式;
(2)若關于的不等式在上有解,求實數(shù)的取值范圍;
(3)若函數(shù)的兩個零點分別在區(qū)間和內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的一條準線方程為x=,離心率為.
(1)求橢圓C的方程;
(2)如圖,設A為橢圓的上頂點,過點A作兩條直線AM,AN,分別與橢圓C相交于M,N兩點,且直線MN垂直于x軸.
① 設直線AM,AN的斜率分別是k1, k2,求k1k2的值;
② 過M作直線l1⊥AM,過N作直線l2⊥AN,l1與l2相交于點Q.試問:點Q是否在一條定直線上?若在,求出該直線的方程;若不在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓的離心率為,左右焦點分別為和,以點為圓心,以為半徑的圓與以點為圓心,以為半徑的圓相交,且交點在橢圓上.
()求橢圓的方程.
()設橢圓, 為橢圓上任意一點,過點的直線交橢圓于、兩點,射線交橢圓于點.
①求的值.
②(理科生做)求面積的最大值.
③(文科生做)當時, 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)一天中不同時刻的用電量(萬千瓦時)關于時間(小時,)的函數(shù)近似滿足,如圖是函數(shù)的部分圖象(對應凌晨點).
(Ⅰ)根據(jù)圖象,求的值;
(Ⅱ)由于當?shù)囟眷F霾嚴重,從環(huán)保的角度,既要控制火力發(fā)電廠的排放量,電力供應有限;又要控制企業(yè)的排放量,于是需要對各企業(yè)實行分時拉閘限電措施.已知該企業(yè)某日前半日能分配到的供電量 (萬千瓦時)與時間(小時)的關系可用線性函數(shù)模型模擬.當供電量小于該企業(yè)的用電量時,企業(yè)就必須停產(chǎn).初步預計停產(chǎn)時間在中午11點到12點間,為保證該企業(yè)既可提前準備應對停產(chǎn),又可盡量減少停產(chǎn)時間,請從這個初步預計的時間段開始,用二分法幫其估算出精確到15分鐘的停產(chǎn)時間段.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量單位:克,重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖如圖.
(1)求的值,并根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的眾數(shù)與平均值;
(2)從盒子中隨機抽取3個小球,其中重量內(nèi)的小球個數(shù)為,求的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com