19.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-4lnx$
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最值.

分析 (Ⅰ)求出定義域,函數(shù)的導(dǎo)數(shù),極值點(diǎn),利用導(dǎo)函數(shù)的符號(hào)求f(x)的單調(diào)區(qū)間;
(Ⅱ)利用函數(shù)的極值以及端點(diǎn)函數(shù)值,求解函數(shù)的最值即可.

解答 解:(I)定義域?yàn)椋?,+∞)…(2分)
得$f'(x)=x-\frac{4}{x}$,令f'(x)=0,x=2

x0<x<2x>2
f'(x)-+
所以f(x)的單調(diào)減區(qū)間為(0,2)單調(diào)增區(qū)間為(2,+∞)             …(6分)
( II)由(I),f(x)在[1,2]減,在[2,e]增,
所以f(x)min=f(2)=2-4ln2…(9分)
又f(1)=$\frac{1}{2}$,$f(e)=\frac{1}{2}{e^2}-4$…(11分)
因?yàn)?f(e)=\frac{1}{2}{e^2}-4<\frac{1}{2}$
所以f(x)min=f(2)=2-4ln2,$f{(x)_{max}}=\frac{1}{2}$…(14分)

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的最值以及函數(shù)的單調(diào)性極值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)焦點(diǎn)$F(\sqrt{3},0)$,長(zhǎng)軸頂點(diǎn)到點(diǎn)A(0,-2)的距離為2$\sqrt{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過(guò)A點(diǎn)的動(dòng)直線(xiàn)l與橢圓C相交于M,N兩點(diǎn),當(dāng)△OMN的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=ax-$\frac{a}{x}$-2lnx.
(Ⅰ)若f(x)在x=2時(shí)有極值,求實(shí)數(shù)a的值和f(x)的極大值;
(Ⅱ)若f(x)在定義域上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)y=f(x)在區(qū)間D上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間D上的導(dǎo)函數(shù)為g(x).若在區(qū)間D上,g(x)<0恒成立,則稱(chēng)函數(shù)f(x)在區(qū)間D上為“凸函數(shù)”.已知實(shí)數(shù)m是常數(shù),f(x)=$\frac{x^4}{12}-\frac{{m{x^3}}}{6}-\frac{{3{x^2}}}{2}$,若對(duì)滿(mǎn)足|m|≤2的任何一個(gè)實(shí)數(shù)m,函數(shù)f(x)在區(qū)間(a,b)上都為“凸函數(shù)”,則b-a的最大值為( 。
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法正確的是( 。
A.函數(shù)y=|x|有極大值,但無(wú)極小值B.函數(shù)y=|x|有極小值,但無(wú)極大值
C.函數(shù)y=|x|既有極大值又有極小值D.函數(shù)y=|x|無(wú)極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知x=1是$f(x)=2x+\frac{x}+lnx$的一個(gè)極值點(diǎn).
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)$g(x)=f(x)-\frac{3+a}{x}$,若函數(shù)g(x)在區(qū)間[1,2]內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=xln x,g(x)=(-x2+ax-3)ex(a為實(shí)數(shù)).
(1)當(dāng)a=5時(shí),求函數(shù)y=g(x)在x=1處的切線(xiàn)方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若一個(gè)正三棱錐的正(主)視圖如圖所示,則其體積等于(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N+時(shí),fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案