【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

【答案】(1)m=0(2)

【解析】試題分析:(1)根據(jù)冪函數(shù)定義得m2-5m+1=1,解得m=0或5,再根據(jù)冪函數(shù)為奇函數(shù)得m=0(2)換元將函數(shù)化為一元二次函數(shù),結(jié)合自變量取值范圍與定義區(qū)間位置關(guān)系確定函數(shù)最值,得函數(shù)值域

試題解析:解:(1)∵函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),∴m2-5m+1=1,.

解得m=0或5

h(x)為奇函數(shù),∴m=0

(2)由(1)可知g(x)=x+,x∈,

=t,則x=-t2,t∈[0,1],

∴f(t)=-t2+t+=- (t-1)2+1∈,故g(x)=h(x)+,x∈的值域?yàn)?/span>.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)若函數(shù)對任意,有,求函數(shù)在[﹣]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

1)若, 為直線軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;

2)若直線被圓截得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行電視奧運(yùn)知識大獎(jiǎng)賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,

初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有次選題答題的機(jī)會,選手累計(jì)答對題或答錯(cuò)題即終止其初賽的比賽,答對題者直接進(jìn)入決賽,答錯(cuò)題者則被淘汰.已知選手甲答題的正確率為

(1) 求選手甲可進(jìn)入決賽的概率;

(2) 設(shè)選手甲在初賽中答題的個(gè)數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等式:sin25°+cos235°+sin 5°cos 35°=

sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此歸納出對任意角度θ都成立的一個(gè)等式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.

1)求的值;

(2)若對于任意的, 恒成立,求的取值范圍;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),其中,曲線在點(diǎn)處的切線與軸相交于點(diǎn).

(1)確定的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(1-x),g(x)=log2(x+1),設(shè)F(x)=f(x)-g(x).

(1)判斷函數(shù)F(x)的奇偶性;

(2)證明函數(shù)F(x)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)證明:;

(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案