9.已知四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中點,點Q在側(cè)棱PC上.
(I)求證:AD⊥平面PBE;
(II)若Q是PC的中點,求證PA∥平面BDQ.

分析 (Ⅰ)利用線面垂直的判定證明,關(guān)鍵是證明AD⊥PE,AD⊥BE;
(Ⅱ)連接AC交BD于點O,連接OQ,證明OQ∥PA,即可得到結(jié)論.

解答 證明:(Ⅰ)由E是AD的中點,PA=PD,所以AD⊥PE…(2分)
又底面ABCD是菱形,∠BAD=60°,

所以AB=BD,又因為E是AD的中點,
所以AD⊥BE…(4分)
又PE∩BE=E…(5分)
所以AD⊥平面PBE…(6分)
(Ⅱ)連接AC交BD于點O,連接OQ…(7分)
因為O是AC的中點,Q是PC的中點,所以O(shè)Q∥PA…(9分)
又PA?平面BDQ…(10分)
OQ?平面BDQ…(11分)
所以PA∥平面BDQ…(12分)

點評 本題考查線面垂直,考查線面平行,解題的關(guān)鍵是掌握線面垂直、線面平行的判定,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{2x+3,x<0}\\{2{x}^{2}+1,x≥0}\end{array}\right.$,則f[f(-1)]的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知tan(α+$\frac{π}{4}$)=$\frac{1}{2}$,且α∈(-$\frac{π}{2}$,0),則$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$=(  )
A.$-\frac{{3\sqrt{5}}}{10}$B.$-\frac{{2\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)為定義域在(0,+∞)上的增函數(shù),且滿足f(2)=1,f(xy)=f(x)+(y)
(1)求f(1),f(4)的值.
(2)如果f(8-x)-f(x-3)≤4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=x2-2x,x∈[t,t+1](t∈R),函數(shù)f(x)的最小值為g(t)
(1)求g(t)的解析式.
(2)求函數(shù)g(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C的中心在原點O,焦點在x軸上,離心率為$\frac{1}{2}$,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標準方程.
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足以AB為直徑的圓過原點,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x+1|-|x-1|+a(a∈R).
(Ⅰ)若a=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三個實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=cos(ωx+φ)(ω>0)圖象的兩條相鄰對稱軸之間距離是$\frac{π}{2}$,若f(x)≤f($-\frac{7π}{8}$),則函數(shù)y=sin(ωx+φ)一個單調(diào)遞增區(qū)間是( 。
A.$[-\frac{3π}{8},\frac{π}{8}]$B.$[\frac{π}{8},\frac{5π}{8}]$C.$[-\frac{5π}{8},-\frac{π}{8}]$D.$[-\frac{π}{8},\frac{3π}{8}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$(1)求f(2)與f($\frac{1}{2}$),f(3)與f($\frac{1}{3}$)
(2)證明:f(x)+f($\frac{1}{x}$)=1.

查看答案和解析>>

同步練習冊答案