精英家教網 > 高中數學 > 題目詳情

【題目】在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數統(tǒng)計表如下: 表1:男生表2:女生

等級

優(yōu)秀

合格

尚待改進

等級

優(yōu)秀

合格

尚待改進

頻數

15

x

5

頻數

15

3

y


(1)從表二的非優(yōu)秀學生中隨機選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數據填寫下邊2×2列聯表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.

男生

女生

總計

優(yōu)秀

非優(yōu)秀

總計

參考數據與公式:
K2= ,其中n=a+b+c+d.
臨界值表:

P(K2>k0

0.05

0.05

0.01

k0

2.706

3.841

6.635

【答案】
(1)解:設從高一年級男生中抽出m人,則 = ,m=25,

∴x=25﹣20=5,y=20﹣18=2,

表2中非優(yōu)秀學生共5人,記測評等級為合格的3人為a,b,c,尚待改進的2人為A,B,

則從這5人中任選2人的所有可能結果為:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10種.

設事件C表示“從表二的非優(yōu)秀學生5人中隨機選取2人,恰有1人測評等級為合格”,

則C的結果為:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6種.

∴P(C)= = ,故所求概率為

男生

女生

總計

優(yōu)秀

15

15

30

非優(yōu)秀

10

5

15

總計

25

20

45


(2)解:∵1﹣0.9=0.1,p(k2>2.706)=0.10,

而K2= = = =1.125<2.706,

所以沒有90%的把握認為“測評結果優(yōu)秀與性別有關”.

思路點撥(1)由題意可得非優(yōu)秀學生共5人,記測評等級為合格的3人為a,b,c,尚待改進的2人為A,B,則從這5人中任選2人的所有可能結果為10個,設事件C表示“從表二的非優(yōu)秀學生5人中隨機選取2人,恰有1人測評等級為合格”,則C的結果為6個,根據概率公式即可求解.(2)由2×2列聯表直接求解即可


【解析】(1)由題意可得非優(yōu)秀學生共5人,記測評等級為合格的3人為a,b,c,尚待改進的2人為A,B,則從這5人中任選2人的所有可能結果為10個,設事件C表示“從表二的非優(yōu)秀學生5人中隨機選取2人,恰有1人測評等級為合格”,則C的結果為6個,根據概率公式即可求解.(2)由2×2列聯表直接求解即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知命題p:關于x的方程x2﹣ax+4=0有實根;命題q:關于x的函數y=2x2+ax+4在[3,+∞)上是增函數,若p∧q是真命題,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (其中為自然對數的底數, )

(1) 設函數,討論函數的零點個數;

(2) 時,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標方程化為直角坐標方程;
(2)設直線l與曲線C交于M,N兩點,點A(1,0),求 + 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設圓x2+y2=2的切線l與軸的正半軸、軸的正半軸分別交于點A、B,當|AB|取最小值時,切線l的方程為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C1 , 拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上各取兩個點,其坐標分別是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的標準方程;
(Ⅱ)是否存在直線L滿足條件:①過C2的焦點F;②與C1交與不同的兩點M,N且滿足 ?若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知在正四棱錐中, 為側棱的中點, 連接相交于點

(1)證明: ;

(2)證明:

(3)設,若質點從點沿平面與平面的表 面運動到點的最短路徑恰好經過點,求正四棱錐 的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的定義域為D,若存在閉區(qū)間 ,使得函數同時滿足:

1內是單調函數;

2上的值域為,則稱區(qū)間的“倍值區(qū)間”.

下列函數中存在“3倍值區(qū)間”的有_____.

;.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,隨著我市經濟的快速發(fā)展,政府對民生也越來越關注. 市區(qū)現有一塊近似正三角形土地ABC(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形DBE,DAGECF,其中、分別相切于點D、E,且無重疊,剩余部分(陰影部分)種植草坪. 設BD長為x(單位:百米,草坪面積為S(單位:百米2).

(1)試用x分別表示扇形DAGDBE的面積,并寫出x的取值范圍;

(2)當x為何值時草坪面積最大?并求出最大面積.

查看答案和解析>>

同步練習冊答案