給出定義:在數(shù)列{an}中,都有( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
(1)數(shù)列{an}是等方差數(shù)列,則數(shù)列是等差數(shù)列;
(2)數(shù)列{(-1)n}是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
其中正確命題序號為   
【答案】分析:(1)利用等方差和等差數(shù)列的定義去判斷.(2)利用等方差的定義判斷.(3)利用等方差數(shù)列和等差數(shù)列的定義.(4)先表示出{akn}的通項公式,然后利用等方差的定義進行判斷.
解答:解:(1)若數(shù)列{an}是等方差數(shù)列,則有,則數(shù)列是公差為p的等差數(shù)列,所以(1)正確.
(2)若數(shù)列為{(-1)n}是,則,所以數(shù)列{(-1)n}是等方差數(shù)列,所以(2)正確.
(3)若數(shù)列{an}是等方差數(shù)列,則,即(an-an-1)(an+an-1)=p,
因為{an}是等差數(shù)列,所以an-an-1=d,所以(an+an-1)d=p,
1°當d=0時,數(shù)列{an}是常數(shù)列.
2°當d≠0時,,所以數(shù)列{an}是常數(shù)列,綜上數(shù)列{an}是常數(shù)列,所以(3)正確.
(4)數(shù)列{an}中的項列舉出來是,a1,a2,…,ak,…,a2k,…
數(shù)列{akn}中的項列舉出來是,ak,a2k,…,a3k,…,
因為(ak+12-ak2)=(ak+22-ak+12)=(ak+32-ak+22)=…=(a2k2-a2k-12)=p
所以(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=kp
所以(akn+12-akn2)=kp
所以{akn}(k∈N*,k為常數(shù))是等方差數(shù)列.
故答案為:(1)(2)(3)(4).
點評:本題考查新定義以及等差數(shù)列的定義及其應用,解題時要注意掌握數(shù)列的概念,以及推理過程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出函數(shù)封閉的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)利用(2)中函數(shù),構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個無窮常數(shù)列{xn},求實數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個命題:
①如果復數(shù)z滿足|z+i|+|z-i|=2,則復數(shù)z在復平面的對應點的軌跡是橢圓.
②若對任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
上述命題中錯誤的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項公式為an=
1
an
,則數(shù)列{an}的所有項之和為1.
(2)過點P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個.
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年山東省文登市高三上學期期中統(tǒng)考理科數(shù)學試卷(解析版) 題型:選擇題

給出下列四個命題,其錯誤的是(     )

①已知是等比數(shù)列的公比,則“數(shù)列是遞增數(shù)列”是“”的既不充分也不必要條件;

②若定義在上的函數(shù)是奇函數(shù),則對定義域內(nèi)的任意必有;

③若存在正常數(shù)滿足,則的一個正周期為;

④函數(shù)圖像關于對稱.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆安徽省六校教育研究會高二素質(zhì)測試理科數(shù)學 題型:填空題

給出下列命題:

①.在等差數(shù)列,且 ,則使數(shù)列前n項和 取最小值的n等于5;

的外接圓的圓心為O,半徑為1,,且,則向量

在向量方向上的投影為;                                                                                   

 

③ 函數(shù)的值域是集合A,則函數(shù)的值域也是集合A;

④直線的傾斜角是;

⑤若定義在區(qū)間D上的函數(shù)對于D上任意n個值總滿足,則稱為D上的凸函數(shù),現(xiàn)已知

 

上凸函數(shù),則銳角三角形△ABC中的最大值為

。其中正確命題的序號是_______。

 

查看答案和解析>>

同步練習冊答案