【題目】已知函數(shù),函數(shù).
(1)若函數(shù), 的最小值為-16,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,不等式的解集為,求實數(shù)的取值范圍.
【答案】(1)8或-32;(2)或;(3)
【解析】試題分析:(1)設(shè),由,可得,
化簡得, ,根據(jù)對稱軸與的關(guān)系,求出函數(shù)的最小值
可得實數(shù)的值;
(2)由函數(shù)的圖象知:函數(shù)的減區(qū)間為, ,
則或;由此可得實數(shù)的取值范圍;
(3)不等式可以化為,即,
則問題轉(zhuǎn)化為當(dāng)時,不等式的解集為,
令(),討論函數(shù)的單調(diào)性和最小值,即可求實數(shù)的取值范圍.
試題解析:
(1)設(shè),又,則,
化簡得, ,對稱軸方程為,
當(dāng),即時,有,解得或;
當(dāng),即時,有,解得(舍);
所以實數(shù)的值為8或-32;
(2)由函數(shù)的圖象知:函數(shù)的減區(qū)間為, ,
或 ,則或;
則實數(shù)的取值范圍為或
(3)不等式可以化為,即,
因為當(dāng)時,不等式的解集為,
所以當(dāng)時,不等式的解集為,
令(),則函數(shù)在區(qū)間上單調(diào)增函數(shù),在上單調(diào)減函數(shù),所以,所以,從而,即所求實數(shù)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè), ,…, 是變量和的個樣本點,直線是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論中正確的是( )
A. 和的相關(guān)系數(shù)在和之間
B. 和的相關(guān)系數(shù)為直線的斜率
C. 當(dāng)為偶數(shù)時,分布在兩側(cè)的樣本點的個數(shù)一定相同
D. 所有樣本點(1,2,…, )都在直線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1) 判斷并證明f(x)在定義域內(nèi)的單調(diào)性;
(2)證明:當(dāng)x>-1時, ;
(3)設(shè)當(dāng)x≥0時, ,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓: 的左、右焦點分別為,上頂點為,過與垂直的直線交軸負(fù)半軸于點,且恰好是線段的中點.
(1)若過三點的圓恰好與直線相切,求橢圓的方程;
(2)在(1)的條件下, 是橢圓的左頂點,過點作與軸不重合的直線交橢圓于兩點,直線分別交直線于兩點,若直線的斜率分別為,試問: 是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)令<≤,其圖像上任意一點P處切線的斜率≤恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用隨機(jī)模擬方法計算y=x2與y=4圍成的面積時,利用計算器產(chǎn)生兩組0~1之間的均勻隨機(jī)數(shù)a1=RAND,b1=RAND,然后進(jìn)行平移與伸縮變換,a=4a1-2,b=4b1,試驗進(jìn)行100次,前98次中落在所求面積區(qū)域內(nèi)的樣本點數(shù)為65,已知最后兩次試驗的隨機(jī)數(shù)a1=0.3,b1=0.8及a1=0.4,b1=0.3,那么本次模擬得出的面積的近似值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若f(1)=0,求函數(shù)f(x)的最大值;
(Ⅱ)令,討論函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若a=2,正實數(shù)x1,x2滿足證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線對稱的圓為.
(1)求圓的方程;
(2)過點作直線與圓交于兩點, 是坐標(biāo)原點,是否存在這樣的直線,使得在平行四邊形中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com