某人在C點測得某塔在南偏西80°,塔頂仰角為45°,此人沿南偏東40°方向前進10米到D,測得塔頂A的仰角為30°,則塔高為( )
(A)15米 (B)5米
(C)10米 (D)12米
C
【解析】【思路點撥】作出圖形確定三角形,找到要用的角度和邊長,利用余弦定理求得.
解:如圖,設塔高為h米,在Rt△AOC中,∠ACO=45°,則OC=OA=h.
在Rt△AOD中,∠ADO=30°,則OD=h,
在△OCD中,∠OCD=120°,CD=10,
由余弦定理得:
OD2=OC2+CD2-2OC·CD·cos∠OCD,
即(h)2=h2+102-2h×10×cos 120°,
∴h2-5h-50=0,解得h=10或h=-5(舍去).
【方法技巧】測量高度的常見思路
解決高度的問題主要是根據條件確定出所利用的三角形,準確地理解仰角和俯角的概念并和三角形中的角度相對應;分清已知和待求的關系,正確地選擇定理和公式,特別注意高度垂直地面構成的直角三角形.
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:選擇題
已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動點P到y軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為( )
(A)+2 (B)+1 (C)-2 (D)-1
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:選擇題
若點A(3,5)關于直線l:y=kx的對稱點在x軸上,則k是( )
(A) (B)±
(C) (D)
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:選擇題
如圖,為了研究鐘表與三角函數的關系,建立了如圖所示的坐標系,設秒針針尖位置P(x,y).若初始位置為P0(,),當秒針從P0(注:此時t=0)正常開始走時,點P的縱坐標y與時間t的函數關系為( )
(A)y=sin(t+) (B)y=sin(-t-)
(C)y=sin(-t+) (D)y=sin(-t-)
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十四第三章第八節(jié)練習卷(解析版) 題型:解答題
在海岸A處,發(fā)現北偏東45°方向、距離A處(-1)海里的B處有一艘走私船;在A處北偏西75°方向、距離A處2海里的C處的緝私船奉命以10海里/小時的速度追截走私船.同時,走私船正以10海里/小時的速度從B處向北偏東30°方向逃竄,問緝私船沿什么方向能最快追上走私船?最少要花多少時間?
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十四第三章第八節(jié)練習卷(解析版) 題型:選擇題
某水庫大壩的外斜坡的坡度為,則坡角α的正弦值為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十六第四章第二節(jié)練習卷(解析版) 題型:填空題
已知向量a=(-2,3),b∥a,向量b的起點為A(1,2),終點B在坐標軸上,則點B的坐標為 .
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十八第四章第四節(jié)練習卷(解析版) 題型:選擇題
已知圓O(O為坐標原點)的半徑為1,PA,PB為該圓的兩條切線,A,B為兩切點,那么·的最小值為( )
(A)-4+(B)-3+
(C)-4+2(D)-3+2
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業(yè)二十九第四章第五節(jié)練習卷(解析版) 題型:解答題
已知關于x的方程:x2-(6+i)x+9+ai=0(a∈R)有實數根b.
(1)求實數a,b的值.
(2)若復數滿足|-a-bi|-2|z|=0,求z為何值時,|z|有最小值,并求出|z|的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com