1.已知x,y滿足$\left\{\begin{array}{l}{3x+y-6≥0}\\{x+y-4≤0}\\{x-y-2≤0}\end{array}\right.$,則z=2x-y的最小值-1.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x-y得y=2x-z,
作出y=2x,的圖象,平移函數(shù)y=2x
由圖象知當(dāng)曲線經(jīng)過(guò)點(diǎn)A時(shí),
曲線在y軸上的截距最大,此時(shí)z最小,
由$\left\{\begin{array}{l}{3x+y-6=0}\\{x+y-4=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
此時(shí)z=21-3=-1,
故答案為:-1.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,作出不等式組對(duì)應(yīng)的平面區(qū)域,利用指數(shù)函數(shù)進(jìn)行平移是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,A=45°,a=4,b=3滿足條件的△ABC(  )
A.不能確定B.無(wú)解C.有一解D.有兩解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.根據(jù)如圖所示的偽代碼,最后輸出的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某校高三學(xué)生有兩部分組成,應(yīng)屆生與復(fù)讀生共2000學(xué)生,期末考試數(shù)學(xué)成績(jī)換算為100分的成績(jī)?nèi)鐖D所示,從高三的學(xué)生中,利用分層抽樣,抽取100名學(xué)生的成績(jī)繪制成頻率分布直方圖:
(1)若抽取的學(xué)生中,應(yīng)屆生與復(fù)讀生的比為9﹕1,確定高三應(yīng)屆生與復(fù)讀生的人數(shù);
(2)計(jì)算此次數(shù)學(xué)成績(jī)的平均分;
(3)若抽取的[80,90),[90,100]的學(xué)生中,應(yīng)屆生與復(fù)讀生的比例關(guān)系也是9﹕1,從抽取的[80,90),[90,100]兩段的復(fù)讀生中,選兩人進(jìn)行座談,設(shè)抽取的[80,90)的人數(shù)為隨機(jī)變量ξ,求ξ的分布列與期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)z是虛數(shù),ω=z+$\frac{1}{z}$是實(shí)數(shù),且-1<ω<2.
(1)求|z|的值及z的實(shí)部的取值范圍;
(2)求|z-2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在2015年全國(guó)青運(yùn)會(huì)火炬?zhèn)鬟f活動(dòng)中,有編號(hào)為1,2,3,4,5的5名火炬手,若從中任選2人,則選出的火炬手的編號(hào)不相連的概率為( 。
A.$\frac{3}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.下列結(jié)論正確的個(gè)數(shù)是3.
①對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\\{\;}\end{array}\right.$,任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②函數(shù)f(x)=cos2αx-sin2αx的最小正周期為π是“α=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)maz在x∈[1,2]上恒成立;
④?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={a|x2+2ax+4>0,不等式對(duì)x∈R恒成立},B={x|2<($\sqrt{2}$)x+k<4}
(1)若k=1,求A∪B;
(2)若A∩B=∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=-$\frac{a}{π}$sinπx且f′(1)=2,則a的值為(  )
A.1B.2C.$\sqrt{2}$D.任意正數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案