1.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的左焦點為F1(-4,0),則m=3.

分析 利用橢圓的焦點坐標(biāo)求出關(guān)系式,推出m即可.

解答 解:橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的左焦點為F1(-4,0),
可得a=5,b=m,c=4,
可得25=m2+16,
解得m=3.
故答案為:3.

點評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)的圖象向右平移1個單位長度,所得圖象與函數(shù)y=2x的圖象關(guān)于y軸對稱,則f(x)=(  )
A.2x+1B.2x-1C.2-x-1D.2-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若p:x∈A={x|x2-2x-3≤0,x∈R}q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若q是?p的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義行列式運算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3.若將函數(shù)f(x)=$|{\begin{array}{l}{sin2x}&{cos2x}\\{\sqrt{3}}&1\end{array}}|$的圖象向左平移m(m>0)個單位后,所得圖象對應(yīng)的函數(shù)為奇函數(shù),則m的最小值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{5}{6}$πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,則z=3x-y的最小值為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l:x-y+a=0,M(-2,0),N(-1,0),動點Q滿足$\frac{|QM|}{|QN|}$=$\sqrt{2}$,動點Q的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l與曲線C交于不同的兩點A,B,且滿足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(其中O為坐標(biāo)原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(1)求sinx-cosx的值;   
 (2)求$\frac{1}{cos2x-sin2x}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖:在屋內(nèi)墻角處堆放米(米堆為一個圓錐的四分之一),米堆底部的弧長為4米,高為2米,則該米堆的體積為$\frac{32}{3π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知四面體ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E,F(xiàn)分別為棱BC和AD的中點.
(Ⅰ)求證:AE⊥平面BCD;
(Ⅱ)求證:AD⊥BC;
(Ⅲ)點G在棱AB上,且滿足FG∥平面BCD,求點G在棱AB上的位置.

查看答案和解析>>

同步練習(xí)冊答案