分析 設AB=BC=CD=AD=a,取BD的中點O,連接AO,CO,推導出△ACD為正三角形,由此能求出∠AED.
解答 解:如圖,設AB=BC=CD=AD=a,取BD的中點O,連接AO,CO,
則由題意可得AO⊥BD,CO⊥BD,AO=CO=$\frac{\sqrt{2}}{2}$a,
∴∠AOC是二面角A-BD-C的平面角,
∵二面角A-BD-C為直二面角,∴∠AOC=90°.
在Rt△AOC中,由題意知AC=$\sqrt{A{O}^{2}+C{O}^{2}}$=a,
∴△ACD為正三角形,
又∵E是CD的中點,
∴AE⊥CD,∴∠AED=90°.
故答案為:90°.
點評 本題考查角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
患心肺疾病 | 患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
p(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com