精英家教網 > 高中數學 > 題目詳情
6.若(1+2x)6的展開式中的第2項大于它的相鄰兩項,則x的取值范圍是( 。
A.$\frac{1}{12}$<x<$\frac{1}{5}$B.$\frac{1}{6}$<x<$\frac{1}{5}$C.$\frac{1}{12}$<x<$\frac{2}{3}$D.$\frac{1}{6}$<x<$\frac{2}{5}$

分析 由題意利用二項展開式的通項公式可得${C}_{6}^{1}•2x$>${C}_{6}^{0}$,且 ${C}_{6}^{1}$•2x>${C}_{6}^{2}$•(2x)2,由此求得x的范圍.

解答 解:若(1+2x)6的展開式中的第2項大于它的相鄰兩項,則有${C}_{6}^{1}•2x$>${C}_{6}^{0}$,且 ${C}_{6}^{1}$•2x>${C}_{6}^{2}$•(2x)2
由此求得$\frac{1}{12}$<x<$\frac{1}{5}$,
故選:A.

點評 本題主要考查二項展開式的通項公式,解一元二次不等式屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.已知f(x)=x+$\frac{2}{x}$,則曲線f(x)在點(1,f(1))處的切線方程為(  )
A.2x-y+1=0B.x-y-4=0C.x+y-2=0D.x+y-4=0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.cos390°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的標準方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-{y^2}=1$D.$\frac{x^2}{2}-{y^2}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數$f(x)=\left\{\begin{array}{l}(a-1)x+4a,x≤1\\-{x^2}-(a+1)x,x>1\end{array}\right.$為R上的減函數,則實數a的取值范圍為[-$\frac{1}{6}$,1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知等差數列{an}的前n項和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數列.數列$\{\frac{b_n}{a_n}\}$是首項為1公比為2的等比數列,
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求數列{bn}前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知a,b∈R,則“($\frac{1}{2}$)a<($\frac{1}{2}$)b”是“l(fā)og2a>log2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.某公司擬資助三位大學生自主創(chuàng)業(yè),現聘請兩位專家,獨立地對每位大學生的創(chuàng)業(yè)方案進行評審.假設評審結果為“支持”或“不支持”的概率都是$\frac{1}{2}$.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令ξ表示該公司的資助總額.
(1)寫出ξ的分布列;
(2)求隨機變量ξ的均值E(ξ)和方差D(ξ).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.如圖所示的程序框圖,其作用是:輸入x的值,輸出相應的y值.若要使輸入的x值與輸出的y值相等,這樣的x值有多少個?

查看答案和解析>>

同步練習冊答案