在正方體ABCD-A1B1C1D1中,E、F分別是BB1,CD的中點(diǎn),求證:平面ADE⊥平面A1FD1
考點(diǎn):平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:由已知得AD⊥平面DCC1D1,從而AD⊥D1F,取AB中點(diǎn)G,由已知條件推導(dǎo)出A1G⊥AE,從而D1F⊥AE,進(jìn)而D1F⊥平面ADE,由此能證明平面A1FD1⊥平面ADE.
解答: 證明:因?yàn)锳BCD-A1B1C1D1是正方體,
所以AD⊥平面DCC1D1,
又D1F?平面DCC1D1,所以AD⊥D1F,
取AB中點(diǎn)G,
連接A1G、FG,因?yàn)镕為CD中點(diǎn),
所以FG
.
.
AD
.
.
A1D1,所以A1G∥D1F,
因?yàn)镋是BB1中點(diǎn),所以Rt△A1AG≌Rt△ABE,
所以∠AA1G=∠HAG,∠AHA1=90°,
即A1G⊥AE,所以D1F⊥AE,因?yàn)锳D∩AE=A,
所以D1F⊥平面ADE,
所以D1F?平面A1FD1,
所以平面A1FD1⊥平面ADE.
點(diǎn)評(píng):本題考查平面與平面垂直的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M是雙曲線
x2
6
-
y2
3
=1左支上的一點(diǎn),F(xiàn)2是右焦點(diǎn),MF2的中點(diǎn)為N,若|ON|=
6
2
(O為坐標(biāo)原點(diǎn)),則M到右準(zhǔn)線的距離是( 。
A、3
B、6
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
,D是線段AB的垂直平分線上的一點(diǎn),D到AB的距離為2,過(guò)C的曲線E上任一點(diǎn)P滿足|
PA
|+|
PB
|為常數(shù).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求出曲線E的方程.
(2)過(guò)點(diǎn)D的直線l與曲線E相交于不同的兩點(diǎn)M,N,且M點(diǎn)在D,N之間,若|
DM
|=λ|
DN
|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱臺(tái)的體對(duì)角線是5cm,高是3cm,求它的兩條相對(duì)側(cè)棱所確定的截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)編號(hào)x依次為1,2,3,4,5,現(xiàn)從一批產(chǎn)品中隨機(jī)抽取20件,對(duì)其等級(jí)編號(hào)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
x12345
頻率a0.30.35bc
(1)若所抽取的20件產(chǎn)品中,等級(jí)編號(hào)為4的恰有2件,等級(jí)編輯為5的恰有4件,求a,b,c的值.
(2)在(1)的條件下,將等級(jí)編輯為4的2件產(chǎn)品記為x1、x2,等級(jí)編輯為5的4件產(chǎn)品記為y1,y2,y3,y4,現(xiàn)從x1、x2,y1,y2,y3,y4,這6件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫(xiě)出所有可能的結(jié)果,并求這兩件產(chǎn)品的等級(jí)編號(hào)恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2,g(x)=alnx+bx(a≠0)
(1)若b=0,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若a=b=1,是否存在實(shí)常數(shù)k和m,使得f(x)≥kx+m和g(x)≤kx+m恒成立?若存在,求出k和m的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若已知a>0,設(shè)G(x)=f(x)+2-g(x)有兩個(gè)零點(diǎn)x1,x2且x1,x0,x2成等差數(shù)列,試探究G′(x0)的符號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知t∈R,設(shè)函數(shù)f(x)=x3-
3(t+1)
2
x2+3tx+1.
(Ⅰ)若f(x)在(0,2)上無(wú)極值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范圍;
(Ⅲ)當(dāng)t=1時(shí),若f(x)≤xex-5x2+5x-m+2(e為自然對(duì)數(shù)的底數(shù))對(duì)任意x∈[0,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為1,過(guò)點(diǎn)M(3,0)的直線與橢圓C相交于兩點(diǎn)A,B
(1)求橢圓C的方程;
(2)設(shè)P為橢圓上一點(diǎn),且滿足
OA
+
OB
=
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,則an+bn=
 
.(n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案