【題目】在平面直角坐標系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標變?yōu)樵瓉淼?/span>,得到曲線.

1)求曲線的普通方程;

2)過點且傾斜角為的直線與曲線交于兩點,求取得最小值時的值.

【答案】(1) ;(2)

【解析】

1)利用消去參數(shù),求得曲線的直角坐標方程.根據(jù)坐標變換的知識求得的普通方程.

2)設出直線的參數(shù)方程,代入的方程并寫出根與系數(shù)關系,求得弦長的表達式,并利用三角函數(shù)最值的求法求得取得最小值時的值.

1)將曲線參數(shù)方程為參數(shù))的參數(shù)消去,得到直角坐標方程為,設上任意一點為,經(jīng)過伸縮變換后的坐標為,由題意得:

,故

2)過點傾斜角為的直線的參數(shù)方程為:為參數(shù)),帶入的方程得:,

對于的參數(shù)分別為,

,

故當時,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某省普通高中學業(yè)水平考試成績按人數(shù)所占比例依次由高到低分為,,五個等級,等級,等級,等級,等級共.其中等級為不合格,原則上比例不超過.該省某校高二年級學生都參加學業(yè)水平考試,先從中隨機抽取了部分學生的考試成績進行統(tǒng)計,統(tǒng)計結(jié)果如圖所示.若該校高二年級共有1000名學生,則估計該年級拿到級及以上級別的學生人數(shù)有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實數(shù),使得有兩個相異零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動直線垂直于軸,與橢圓交于兩點,點在直線上,.

1)求點的軌跡的方程;

2)直線與橢圓相交于,與曲線相切于點,為坐標原點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求曲線處的切線的方程;

(2)若對于任意實數(shù)恒成立,試確定的取值范圍;

(3)當時,函數(shù)上是否存在極值?若存在,請求出極值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線上的點到焦點的距離為2.

1)求拋物線的方程;

2)如圖,點是拋物線上異于原點的點,拋物線在點處的切線與軸相交于點,直線與拋物線相交于兩點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)對任意,,都有恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是直角斜邊上一動點,將直角沿著翻折,使構(gòu)成直二面角,則翻折后的最小值是_______

查看答案和解析>>

同步練習冊答案