【題目】已知橢圓C:x2+2y2=4,
(1)求橢圓C的離心率
(2)設(shè)O為原點(diǎn),若點(diǎn)A在橢圓C上,點(diǎn)B在直線y=2上,且OA⊥OB,求直線AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.
【答案】
(1)解:由x2+2y2=4,得橢圓C的標(biāo)準(zhǔn)方程為 .
∴a2=4,b2=2,從而c2=a2﹣b2=2.
因此a=2,c= .
故橢圓C的離心率e=
(2)解:直線AB與圓x2+y2=2相切.
證明如下:
設(shè)點(diǎn)A,B的坐標(biāo)分別為(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴ =0,即tx0+2y0=0,解得 .
當(dāng)x0=t時(shí), ,代入橢圓C的方程,得t= .
故直線AB的方程為x= ,圓心O到直線AB的距離d= .
此時(shí)直線AB與圓x2+y2=2相切.
當(dāng)x0≠t時(shí),直線AB的方程為 ,
即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.
圓心O到直線AB的距離d= .
又 ,t= .
故 = .
此時(shí)直線AB與圓x2+y2=2相切
【解析】(1)化橢圓方程為標(biāo)準(zhǔn)式,求出半長(zhǎng)軸和短半軸,結(jié)合隱含條件求出半焦距,則橢圓的離心率可求;(2)設(shè)出點(diǎn)A,B的坐標(biāo)分別為(x0 , y0),(t,2),其中x0≠0,由OA⊥OB得到 =0,用坐標(biāo)表示后把t用含有A點(diǎn)的坐標(biāo)表示,然后分A,B的橫坐標(biāo)相等和不相等寫(xiě)出直線AB的方程,然后由圓x2+y2=2的圓心到AB的距離和圓的半徑相等說(shuō)明直線AB與圓x2+y2=2相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,角所對(duì)的邊分別為,設(shè)為的面積,且.
(1)求角的大小;
(2)若,求周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩位射擊運(yùn)動(dòng)員在一次射擊測(cè)試中各射靶7次,每次命中的環(huán)數(shù)如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( )
A. 甲射擊的平均成績(jī)比乙好 B. 甲射擊的成績(jī)的眾數(shù)小于乙射擊的成績(jī)的眾數(shù)
C. 乙射擊的平均成績(jī)比甲好 D. 甲射擊的成績(jī)的極差大于乙射擊的成績(jī)的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在,使成立,則稱為的不動(dòng)點(diǎn).已知函數(shù) .
(1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若的兩個(gè)不動(dòng)點(diǎn)為,,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一位數(shù)學(xué)老師在黑板上寫(xiě)了三個(gè)向量,,,其中,都是給定的整數(shù).老師問(wèn)三位學(xué)生這三個(gè)向量的關(guān)系,甲回答:“與平行,且與垂直”,乙回答:“與平行”,丙回答:“與不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測(cè),的值不可能為( )
A. , B. , C. , D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家邊防安全條例規(guī)定:當(dāng)外輪與我國(guó)海岸線的距離小于或等于海里時(shí),就會(huì)被警告.如圖,設(shè),是海岸線上距離海里的兩個(gè)觀察站,滿足,一艘外輪在點(diǎn)滿足,.
(1),滿足什么關(guān)系時(shí),就該向外輪發(fā)出警告令其退出我國(guó)海域?
(2)當(dāng)時(shí),間處于什么范圍內(nèi)可以避免使外輪進(jìn)入被警告區(qū)域?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F(xiàn)為PC的中點(diǎn),AF⊥PB.
(1)求PA的長(zhǎng);
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com