10.已知函數(shù)f(x)=sinx-cosx,則把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)(x)的一條對稱軸方程為(  )
A.x=$\frac{π}{6}$B.x=$\frac{11π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{4}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦函數(shù)的圖象的對稱性,得出結(jié)論.

解答 解:把函數(shù)f(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,可得y=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)的圖象,
再向右平移$\frac{π}{3}$,得到函數(shù)g(x)=$\sqrt{2}$sin[$\frac{1}{2}$(x-$\frac{π}{3}$)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{5π}{12}$)的圖象,
令$\frac{1}{2}$x-$\frac{5π}{12}$=kπ+$\frac{π}{2}$,求得x=2kπ+$\frac{11π}{6}$,k∈Z,
k=0時(shí),則函數(shù)(x)的一條對稱軸方程為x=$\frac{11π}{6}$,
故選:B.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知角α的終邊落在射線5x+12y=0,(x≤0)上,則cosα+$\frac{1}{tanα}$-$\frac{1}{sinα}$的值為-$\frac{77}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=sin2x-4sinx-3
求:(1)函數(shù)的最大值,最小值
(2)求取得最大值,最小值時(shí)的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點(diǎn)x=e2處的切線與直線x-2y+e=0平行.
(Ⅰ)若函數(shù)g(x)=$\frac{1}{2}$f(x)-ax在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅱ)若函數(shù)F(x)=f(x)-$\frac{{k{x^2}}}{x-1}$無零點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1-$\sqrt{x}$)5(1+$\sqrt{x}$)6展開式中x${\;}^{\frac{3}{2}}$的系數(shù)為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列4個(gè)命題:
①?x∈(0,1),($\frac{1}{2}$)x>log${\;}_{\frac{1}{2}}}$x.
②?k∈[0,8),y=log2(kx2+kx+2)的值域?yàn)镽.
③“存在x∈R,(${\frac{1}{2}}$)x+2x≤5”的否定是”不存在x∈R,(${\frac{1}{2}}$)x+2x≤5”
④“若x∈(1,5),則f(x)=x+$\frac{1}{x}$≥2”的否命題是“若x∈(-∞,1]∪[5,+∞),則f(x)=x+$\frac{1}{x}$<2”
其中真命題的序號是①④.(請將所有真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=|x-1|+|x-2|值域是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)F1、F2分別是雙曲線x2-$\frac{{y}^{2}}{4}$=1的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC中cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,O為△ABC內(nèi)心,2$\sqrt{5}$$\overrightarrow{OA}$+$\sqrt{10}$$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$,則m=(  )
A.5$\sqrt{2}$B.2$\sqrt{5}$C.3$\sqrt{10}$D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案