16.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ為參數(shù))所表示曲線的準(zhǔn)線方程是$y=-\frac{1}{4}$.

分析 利用同角三角函數(shù)的基本關(guān)系,消去參數(shù)θ,求得曲線方程,x2=y(0≤y≤2),由拋物線的性質(zhì),即可求得示曲線的準(zhǔn)線方程.

解答 解:利用同角三角函數(shù)的基本關(guān)系,消去參數(shù)θ,
參數(shù)方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ為參數(shù))化為普通方程可得x2=y(0≤y≤2),
則拋物線的焦點(diǎn)在y軸正半軸上,焦點(diǎn)坐標(biāo)為(0,$\frac{1}{4}$),
∴曲線的準(zhǔn)線方程$y=-\frac{1}{4}$,
故答案為:$y=-\frac{1}{4}$.

點(diǎn)評(píng) 本題考查拋物線的參數(shù)方程,拋物線的簡(jiǎn)單幾何性質(zhì),考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若關(guān)于x的不等式|x-1|<kx的解集中恰有三個(gè)整數(shù),則實(shí)數(shù)k的取值范圍是($\frac{2}{3}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知F1、F2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF1的中點(diǎn)在y軸上,若2∠PF1F2=∠F1PF2,那么橢圓的離心率為$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)x,y,z均為正實(shí)數(shù),則三個(gè)數(shù)$\frac{x}{z}$+$\frac{x}{y}$,$\frac{y}{x}$+$\frac{y}{z}$,$\frac{z}{x}$+$\frac{z}{y}$( 。
A.都大于2B.都小于2
C.至多有一個(gè)小于2D.至少有一個(gè)不小于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當(dāng)a=-1時(shí),解不等式f(x)≤g(x);
(2)若存在x0∈R,使得f(x0)≥$\frac{1}{2}$g(x0),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{4y=1+sin2θ}\end{array}}\right.$(θ為參數(shù))所表示曲線的準(zhǔn)線方程是y=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x(x-c)2在x=2處有極大值,則f(x)的極小值等于$-\frac{32}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知α為銳角,且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,則sin2α=$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓O:x2+y2=4與x軸負(fù)半軸的交點(diǎn)為A,點(diǎn)P在直線l:$\sqrt{3}$x+y-a=0上,過(guò)點(diǎn)P作圓O的切線,切點(diǎn)為T(mén)
(1)若a=8,切點(diǎn)T($\sqrt{3}$,-1),求點(diǎn)P的坐標(biāo);
(2)若PA=2PT,求實(shí)數(shù)a的取值范圍;
(3)若不過(guò)原點(diǎn)O的直線與圓O交于B,C兩點(diǎn),且滿(mǎn)足直線OB,BC,OC的斜率依次成等比數(shù)列,求直線l的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案