11.已知虛數(shù)z滿足$z+\frac{1}{z}∈R$,且|z-2|=2,求z.

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的意義、復(fù)數(shù)相等的定義即可得出.

解答 解:設(shè)z=a+bi(a,b∈R,b≠0),則$z+\frac{1}{z}=(a+\frac{a}{{{a^2}+{b^2}}})+(b-\frac{{{a^2}+{b^2}}})i∈R$,
得:$b-\frac{{{a^2}+{b^2}}}=0$,即a2+b2=1  ①
又由|z-2|=2,得(a-2)2+b2=4     ②
解①②組成的方程組得:$\left\{\begin{array}{l}a=\frac{1}{4}\\ b=±\frac{{\sqrt{15}}}{4}\end{array}\right.$
所以  $z=\frac{1}{4}±\frac{{\sqrt{15}}}{4}i$

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的意義、復(fù)數(shù)相等,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.“中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān)”,某校研究性學(xué)習(xí)小組對全校學(xué)生按“跟從別人闖紅燈”,“從不闖紅燈”、“帶頭闖紅燈”等三種形式進(jìn)行調(diào)查,獲得下表數(shù)據(jù):
  跟從別人闖紅燈 從不闖紅燈 帶頭闖紅燈
 男生 980 410 60
 女生 340 15060
用分層抽樣的方法從所有被調(diào)查的人中抽取一個容量為n的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人.
(Ⅰ)求n的值;
(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,在選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動,求這2人中至少有一人是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的否命題是若a,b不都是奇數(shù),則a+b不是偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]時函數(shù)f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$對任意x∈(0,3]恒成立,求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上的函數(shù)f(x)滿足f(1-x)=f(1+x),且f(x)在[1,+∞)為遞增函數(shù),若不等式f(1-m)<f(m)成立,則m的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線a,b,c及平面α,β,γ,下列命題正確的是(  )
A.若a?α,b?α,c⊥a,c⊥b 則c⊥αB.若a⊥α,b⊥α 則a∥b
C.若a∥α,α∩β=b  則a∥bD.若b?α,a∥b  則 a∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若sinα=3cosα,則$\frac{sin2α}{{{{cos}^2}α}}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知M、N分別是四面體OABC的棱OA,BC的中點(diǎn),點(diǎn)P在線MN上,且MP=2PN,設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OP}$=(  )
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)min{m,n}表示m、n二者中較小的一個,已知函數(shù)f(x)=x2+8x+14,g(x)=min{($\frac{1}{2}$)x-2,log2(4x)}(x>0),若?x1∈[-5,a](a≥-4),?x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為(  )
A.-4B.-3C.-2D.0

查看答案和解析>>

同步練習(xí)冊答案