【題目】若函數的圖象與曲線C:存在公共切線,則實數的取值范圍為
A. B. C. D.
【答案】D
【解析】
設公切線與f(x)、g(x)的切點坐標,由導數幾何意義、斜率公式列出方程化簡,分離出a后構造函數,利用導數求出函數的單調區(qū)間、最值,即可求出實數a的取值范圍.
設公切線與f(x)=x2+1的圖象切于點(x1,),
與曲線C:g(x)=aex+1切于點(x2,),
∴2x1=
化簡可得,2x1=,得x1=0或2x2=x1+2,
∵2x1=,且a>0,∴x1>0,則2x2=x1+2>2,即x2>1,
由2x1=得a=
設h(x)=(x>1),則h′(x)= ,
∴h(x)在(1,2)上遞增,在(2,+∞)上遞減,
∴h(x)max=h(2)=,
∴實數a的取值范圍為(0,],
故選:D.
科目:高中數學 來源: 題型:
【題目】一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經建有索道供游客觀賞,經測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現調查后發(fā)現,游客對在同一圓周上三島A、B、C且位于(優(yōu)。┮黄娘L景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風光,現決定在上選擇一個點D建立索道供游客游覽,經研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小型企業(yè)甲產品生產的投入成本x(單位:萬元)與產品銷售收入y(單位:萬元)存在較好的線性關系,下表記錄了最近5次該產品的相關數據.
x(萬元) | 3 | 5 | 7 | 9 | 11 |
y(萬元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關于x的線性回歸方程;
(2)根據(1)中的回歸方程,判斷該企業(yè)甲產品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?
相關公式:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對每一個實數a,將拋物線記為。
(1)求所有的交集;
(2)求所有的焦點的軌跡方程;
(3)求所有的直線l,使其與所有的都有公共點;
(4)求所有的a,使得存在一條以y軸為對稱軸且過點的開口向下的拋物線與相切。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
已知函數是奇函數,的定義域為.當時, .(e為自然對數的底數).
(1)若函數在區(qū)間上存在極值點,求實數的取值范圍;
(2)如果當x≥1時,不等式恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩名射手在一次射擊中得分為兩個相互獨立的隨機變量ξ,η,已知甲、乙兩名射手在每次射擊中射中的環(huán)數大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數學期望與方差,并以此比較甲、乙的射擊技術.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com