函數(shù)f(x)=2|x|+x-2的零點有
2
2
個.
分析:由f(x)=0,則2|x|=2-x,設(shè)f(x)=2|x|,g(x)=2-x,分別作出函數(shù)f(x)和g(x)的圖象,利用兩個圖象的交點個數(shù)確定函數(shù)零點的個數(shù).
解答:解:∵f(x)=2|x|+x-2,
∴由f(x)=0,
即2|x|=2-x,
設(shè)f(x)=2|x|,g(x)=2-x,
分別作出函數(shù)f(x)和g(x)的圖象如圖:
由圖象可知兩個圖象有兩個交點,
∴函數(shù)f(x)=2|x|+x-2的零點有2個.
故答案為:2.
點評:本題主要考查函數(shù)零點個數(shù)的判斷,將函數(shù)轉(zhuǎn)化為求f(x)和g(x)的圖象交點個數(shù)問題是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

8、已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=3,當x∈[0,1]時,f(x)=2-x,則f(-2 009.9)=
1.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)為定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=1,當x∈[1,2]時,f(x)=2-x,則f(-2013)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案