已知為線段上一點(diǎn),為直線外一點(diǎn),上一點(diǎn),滿足,,,且,則的值為( )

A. B. C. D.

 

【答案】

C

【解析】

試題分析:

,而,

,又,即

的角平分線上,由此得的內(nèi)心,過(guò),為圓心,為半徑,作的內(nèi)切圓,如圖,分別切、,

,

中,,.

.

考點(diǎn):本題考查三角形的內(nèi)心性質(zhì),平面向量的數(shù)量積,向量的投影.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=4,動(dòng)點(diǎn)P(t,0)(-2≤t≤2),曲線C:y=3|x-t|.曲線C與圓O相交于兩個(gè)不同的點(diǎn)M,N
(1)若t=1,求線段MN的中點(diǎn)P的坐標(biāo);
(2)求證:線段MN的長(zhǎng)度為定值;
(3)若t=
43
,m,n,s,p均為正整數(shù).試問(wèn):曲線C上是否存在兩點(diǎn)A(m,n),B(s,p)(11),使得圓O上任意一點(diǎn)到點(diǎn)A的距離與到點(diǎn)B的距離之比為定值k(k>1)?若存在請(qǐng)求出所有的點(diǎn)A,B;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•崇文區(qū)二模)如圖所示,已知A(-1,0),B(1,0),直線l垂直AB于A點(diǎn),P為l上一動(dòng)點(diǎn),點(diǎn)N為線段BP上一點(diǎn),且滿足
BP
=2
BN
,點(diǎn)M滿足
PM
AB
(λ>0),
MN
BP
=0.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡方程C;
(Ⅱ)在上述曲線C內(nèi)是否存在一點(diǎn)Q,若過(guò)點(diǎn)Q的直線與曲線C交于兩點(diǎn)E、F,使得以EF為直徑的圓都與l相切.若存在,求出點(diǎn)Q的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省濟(jì)寧市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線,使得和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)的面積最大時(shí)點(diǎn)P的坐標(biāo).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆吉林省高二上學(xué)期質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題

.已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線,使得和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)的面積最大時(shí)點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案