?x∈R,不等式-x2+2ax-(a+2)<0恒成立,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)恒成立問(wèn)題
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:化二次不等式的系數(shù)為正值,然后由二次不等式對(duì)應(yīng)的二次方程的判別式小于0得答案.
解答: 解:由-x2+2ax-(a+2)<0,得x2-2ax+(a+2)>0.
?x∈R,不等式-x2+2ax-(a+2)<0恒成立,即
?x∈R,不等式x2-2ax+(a+2)>0恒成立,
則(-2a)2-4(a+2)<0,整理得:a2-a-2<0.
解得-1<a<2.
∴?x∈R,不等式-x2+2ax-(a+2)<0恒成立的實(shí)數(shù)a的取值范圍是(-1,2).
故答案為:(-1,2).
點(diǎn)評(píng):本題考查了函數(shù)恒成立問(wèn)題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了“三個(gè)二次”的結(jié)合求解參數(shù)問(wèn)題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:
分組頻數(shù)頻率
50.5~60.540.08
60.5~70.50.16
70.5~80.510
80.5~90.5160.32
90.5~100.5
合計(jì)50
(1)請(qǐng)?zhí)畛漕l率分布表的空格,并補(bǔ)全頻率分布直方圖;
(2)若成績(jī)?cè)?5.5~85.5分的學(xué)生為二等獎(jiǎng),請(qǐng)你估計(jì)獲得二等獎(jiǎng)的人數(shù);
(3)用分層抽樣的方法從80分以上(不包括80分)的學(xué)生中抽取了7人進(jìn)行試卷分析,再?gòu)倪@7人中選取2人進(jìn)行經(jīng)驗(yàn)匯報(bào),求選出的2人至少有1人在[90.5,100.5]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)=x2+2x.
(1)解關(guān)于x的不等式g(x)≥f(x)-|x-1|;
(2)如果對(duì)任意的x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若
cosA-2cosC
cosB
=
2c-a
b
,則
sinC
sinA
=(  )
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x+1
x+a
在區(qū)間(3,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)an=ln[1+n(n+1)],前n項(xiàng)和為Sn,證明不等式:Sn>2n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,將f(x)的圖象向左平移
π
3
個(gè)長(zhǎng)度單位,所得圖象對(duì)應(yīng)的函數(shù)解析式為(  )
A、f(x)=sin2x
B、f(x)=-sin2x
C、f(x)=sin(2x-
3
D、f(x)=sin(2x+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+x(a,b∈R且ab≠0)的圖象如圖,且|x1|>|x2|,則有( 。
A、a>0,b>0
B、a<0,b<0
C、a<0,b>0
D、a>0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-4,若存在實(shí)數(shù)a使f(a)=g(b),則b的取值范圍為( 。
A、[1,+∞)
B、(2-
2
,2+
2
C、[1,3]
D、(1,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案