某廣告公司設計一個凸八邊形的商標,它的中間是一個正方形,外面是四個腰長為,頂角為的等腰三角形.
(1)若角時,求該八邊形的面積;
(2)寫出的取值范圍,當取何值時該八邊形的面積最大,并求出最大面積.
(1);(2),當時,八邊形的面積取最大值.

試題分析:(1)先利用結合余弦定理確定正方形的邊長,然后將八邊形分為一個正方形與四個等腰三角形求面積,最后將面積相加得到八邊形的面積;(2)利用得到角的取值范圍,利用正弦定理求出正方形的邊長(利用含的代數(shù)式表示),然后利用面積公式求出八邊形的面積關于的三角函數(shù),結合降冪公式、輔助角公式將三角函數(shù)解析式進行化簡,最后求出相應函數(shù)在區(qū)間的最大值.
(1)由題可得正方形邊長為,
;
(2)顯然,所以

,
,,故,
,此時.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面向量
a
=(
2
2
),
b
=(sin
π
4
x,cos
π
4
x),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象上的所有的點向左平移1個單位長度,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)+k在(-2,4)上有兩個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系xOy中,角α的頂點是原點,始邊與x軸正半軸重合,終邊交單位圓于點A,且α∈(
π
3
,
π
2
)
.將角α的終邊按逆時針方向旋轉
π
6
,交單位圓于點B.記A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
4
,求x2;
(Ⅱ)分別過A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義運算:,例如,則的最大值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

“θ≠”是“cos θ≠”的(  )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

”是“函數(shù)的圖象關于y軸對稱”的
   條件.(在“充分必要”、“充分不必要”、“必要不充分”、
“既不充分也不必要”中選一個合適的填空)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在△ABC中,角A,B,C的對邊分別為,若,則△ABC的形狀為(   )
A.銳角三角形B.直角三角形C.鈍角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊經過點P(-3,).
(1)求sin 2α-tan α的值;
(2)若函數(shù)f(x)=cos(x-α)cos α-sin(x-α)sin α,求函數(shù)y=f-2f2(x)在區(qū)間上的值域.

查看答案和解析>>

同步練習冊答案