【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)如果不等式對(duì)于一切的恒成立,求的取值范圍;

(3)證明:不等式對(duì)于一切的恒成立

【答案】(1)(2)(3)見解析

【解析】分析:(1)先求一階導(dǎo)函數(shù),,用點(diǎn)斜式寫出切線方程。

(2)分離變量,,構(gòu)建函數(shù),轉(zhuǎn)化為求函數(shù)的最大值

(3)構(gòu)建函數(shù)證明的最小值大于0.

解:(1)當(dāng)時(shí),,則,故,所以曲線在點(diǎn)處的切線方程為:;

(2)因?yàn)?/span>,所以恒成立,等價(jià)于恒成立.

設(shè),得,

當(dāng)時(shí),,所以 上單調(diào)遞減,

所以 時(shí),.

因?yàn)?/span> 恒成立,所以的取值范圍是

(3)當(dāng)時(shí),,等價(jià)于.

設(shè),,得.

由(2)可知,時(shí),恒成立.

所以時(shí),,有,所以.

所以上單調(diào)遞增,當(dāng)時(shí),.

因此當(dāng)時(shí),恒成立

分析:(1)利用導(dǎo)數(shù)求在某點(diǎn)切線方程利用,即可。

(2)已知不等式的恒成立,求解參數(shù)的取值范圍,分離變量,轉(zhuǎn)化為求函數(shù)的最值問題。

(3)證明不等式恒成立問題,構(gòu)建函數(shù),證明的最小值大于0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于直線以及平面,下面命題中正確的是( )

A. ,則

B. ,則

C. ,則

D. ,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名髙一新生分成水平相同的甲、乙兩個(gè)平行班”,每班50.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為成績(jī)優(yōu)秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)從乙班隨機(jī)抽取2名學(xué)生的成績(jī),成績(jī)優(yōu)秀的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望;

(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

甲班A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)對(duì)任意實(shí)數(shù)xy恒有fx+y)=fx+fy)且當(dāng)x0,fx)<0

給出下列四個(gè)結(jié)論:

f0)=0 fx)為偶函數(shù);

fx)為R上減函數(shù); fx)為R上增函數(shù).

其中正確的結(jié)論是( 。

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南安陽市高三一模如下圖,在平面直角坐標(biāo)系直線與直線之間的陰影部分即為,區(qū)域中動(dòng)點(diǎn)的距離之積為1

)求點(diǎn)的軌跡的方程

)動(dòng)直線穿過區(qū)域,分別交直線兩點(diǎn),若直線與軌跡有且只有一個(gè)公共點(diǎn),求證 的面積恒為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的t>0,存在唯一的s,使t=f(s).
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時(shí),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)fx)=aa為常數(shù)).

1)求a的值;

2)若函數(shù)gx)=|2x+1fx|k2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;

3)若x[2,﹣1]時(shí),不等式fx恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線兩點(diǎn).

(Ⅰ)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,首項(xiàng)a1=1,且a3+1a2+1a4+2的等比中項(xiàng).

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案