精英家教網 > 高中數學 > 題目詳情

【題目】偶函數y=f(x)在區(qū)間(﹣∞,﹣1]上是增函數,則下列不等式成立的是(
A.f(﹣1)>f(
B.f( )>f(﹣ )??
C.f(4)>f(3)
D.f(﹣ )>f(

【答案】D
【解析】解:由題意:f(x)是偶函數,則f(﹣x)=f(x),在區(qū)間(﹣∞,﹣1]上是增函數. 對于A:f( )=f(- ),∵ ,∴f(﹣1)<f( );
對于B:f(x)是偶函數,即f(﹣x)=f(x),f( )=f(﹣ );
對于C:f(4)=f(﹣4),f(3)=f(﹣3),∵﹣4<﹣3,∴f(4)>f(3);
對于D:f( )=f(﹣ ),∵ ∴f(﹣ )>f( ).
故選:D.
【考點精析】根據題目的已知條件,利用函數奇偶性的性質的相關知識可以得到問題的答案,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在數列{an}中,a1=1,3anan1+an﹣an1=0(n≥2).
(1)求證:數列{ }等差數列;
(2)數列bn=anan+1 , 求數列bn的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上且以2為周期的偶函數,當0≤x≤1,f(x)=x2 . 如果函數g(x)=f(x)﹣(x+m)有兩個零點,則實數m的值為(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f (x)=ex+2x2-3x.

(1)求證:函數f (x)在區(qū)間[0,1]上存在唯一的極值點.

(2)當x時,若關于x的不等式f (x)≥ x2+(a-3)x+1恒成立,試求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4一1:幾何證明選講 如圖,C是以AB為直徑的半圓O上的一點,過C的直線交直線AB于E,交過A點的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 ,其中[x]表示不超過x的最大整數,若直線y=kx+k(k>0)與函數y=f(x)的圖象恰有三個不同的交點,則k的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)令,可將已知三角函數關系轉換成代數函數關系,試寫出函數的解析式及定義域;

(2)求函數的最大值;

(3)函數在區(qū)間內是單調函數嗎?若是,請指出其單調性;若不是,請分別指出其單調遞增區(qū)間和單調遞減區(qū)間(不需要證明).

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= ,g(x)=|x﹣2|,則下列結論正確的是(
A.h(x)=f(x)+g(x)是偶函數
B.h(x)=f(x)?g(x)是奇函數
C.h(x)= 是偶函數
D.h(x)= 是奇函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來空氣質量逐步惡化,霧霾天氣現象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關,在市第一人民醫(yī)院隨機對入院50人進行了問卷調查,得到了如表的列聯表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯表補充完整;

(2)是否有99%的把握認為患心肺疾病與性別有關?說明你的理由.

參考格式:,其中.

下面的臨界值僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案