【題目】已知函數(shù) ,若對(duì)任意,存在,,則實(shí)數(shù)的取值范圍為_____.
【答案】
【解析】
利用導(dǎo)數(shù)求函數(shù)f(x)在(﹣1,1)上的最小值,把對(duì)任意x1∈(﹣1,1),存在x2∈(3,4),f(x1)≥g(x2)轉(zhuǎn)化為g(x)在(3,4)上的最小值小于等于1有解.
解:由f(x)=ex﹣x,得f′(x)=ex﹣1,
當(dāng)x∈(﹣1,0)時(shí),f′(x)<0,當(dāng)x∈(0,1)時(shí),f′(x)>0,
∴f(x)在(﹣1,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增,
∴f(x)min=f(0)=1.
對(duì)任意x1∈(﹣1,1),存在x2∈(3,4),f(x1)≥g(x2),
即g(x)在(3,4)上的最小值小于等于1,
函數(shù)g(x)=x2﹣bx+4的對(duì)稱(chēng)軸為x=.
當(dāng)≤3,即b≤6時(shí),g(x)在(3,4)上單調(diào)遞增,g(x)>g(3)=13﹣3b,
由13﹣3b≤1,得b≥4,∴4≤b≤6;
當(dāng)≥4,即b≥8時(shí),g(x)在(3,4)上單調(diào)遞減,g(x)>g(4)=20﹣4b,
由20﹣4b≤1,得b≥,∴b≥8;
當(dāng)3<<4,即6<b<8時(shí),g(x)在(3,4)上先減后增,,
由≤1,解得或b,∴6<b<8.
綜上,實(shí)數(shù)b的取值范圍為[4,+∞).
故答案為:[4,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有成立,且.
(1)求的值;
(2)求的解析式,并用定義法證明在單調(diào)遞增;
(3)已知,設(shè)P:,不等式恒成立,Q:時(shí),是單調(diào)函數(shù)。如果滿(mǎn)足P成立的的集合記為A,滿(mǎn)足Q成立的集合記為B,求(R為全集)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿(mǎn)足an+1+(-1)n an =2n-1,則{an}的前64項(xiàng)和為( )
A. 4290 B. 4160 C. 2145 D. 2080
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本小題12分)
調(diào)查某地區(qū)老年人是否需要志愿者幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地調(diào)查500位老年人,結(jié)果如下:
性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
①估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。
②能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意實(shí)數(shù)都有函數(shù)的圖象與直線相切,則稱(chēng)函數(shù)為“恒切函數(shù)”,設(shè)函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)已知函數(shù)為“恒切函數(shù)”,
①求實(shí)數(shù)的取值范圍;
②當(dāng)取最大值時(shí),若函數(shù)也為“恒切函數(shù)”,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)入新華書(shū)店購(gòu)買(mǎi)數(shù)學(xué)課外閱讀書(shū)籍,經(jīng)過(guò)篩選后,他們都對(duì)三種書(shū)籍有購(gòu)買(mǎi)意向,已知甲同學(xué)購(gòu)買(mǎi)書(shū)籍的概率分別為,乙同學(xué)購(gòu)買(mǎi)書(shū)籍的概率分別為,假設(shè)甲、乙是否購(gòu)買(mǎi)三種書(shū)籍相互獨(dú)立.
(1)求甲同學(xué)購(gòu)買(mǎi)3種書(shū)籍的概率;
(2)設(shè)甲、乙同學(xué)購(gòu)買(mǎi)2種書(shū)籍的人數(shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=2,求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)單位向量 對(duì)于任意實(shí)數(shù)λ都有| + |≤| ﹣λ |成立,則向量 的夾角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形和內(nèi)接于同一個(gè)直角三角形ABC中,如圖所示,設(shè),若兩正方形面積分別為=441,=440,則=______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com