已知函數(shù)f(x)=
1
2
ax2+2x-lnx(a≠0).
(1)當(dāng)a=3時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若f(x)存在單調(diào)增區(qū)間,求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)將a=3代入化簡(jiǎn),求導(dǎo),求解單調(diào)性,(2)由已知得f′(x)=ax+2-
1
x
,利用導(dǎo)數(shù)進(jìn)行理解,即f'(x)<0在(0,+∞)上有解.可得ax2+2x-1<0在正數(shù)范圍內(nèi)至少有一個(gè)解,結(jié)合根的判別式列式,不難得到a的取值范圍.
解答: 解:(1)當(dāng)a=3時(shí),函數(shù)f(x)=
3
2
x2+2x-lnx,(x>0),
則f′(x)=3x-
1
x
+2=
3x2+2x-1
x

∵x>0,
∴當(dāng)3x2+2x-1<0即0<x<
1
3
時(shí),f′(x)<0,函數(shù)單調(diào)遞減,
當(dāng)3x2+2x-1≥0即x≥
1
3
時(shí),f′(x)≥0,函數(shù)單調(diào)遞增,
綜上,函數(shù)的單調(diào)增區(qū)間為[
1
3
,+∞),單調(diào)減區(qū)間為(0,
1
3
),
(2)f(x)=
1
2
ax2+2x-lnx,(x>0),
f′(x)=ax+2-
1
x
=
ax2+2x-1
x
,
依題意,得f'(x)>0在(0,+∞)上有解.即ax2+2x-1>0在x>0時(shí)有解.
①顯然a≥0時(shí),不等式有解,
②a<0時(shí),需滿(mǎn)足△=4+4a>0,解得a>-1,即-1<a<0,
綜合①②得a>-1,
故a的取值范圍為:(-1,+∞).
點(diǎn)評(píng):本題主要考查實(shí)數(shù)取值范圍的求法,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,分類(lèi)討論等綜合解題能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E為BB1的中點(diǎn),D∈AB,∠A1DE=90°.
(1)求證:CD⊥平面ABB1A1;
(2)求二面角D-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x4+x2,x>0
cosx,x≤0
,則下列結(jié)論正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)是(-∞,+∞)上的增函數(shù)
C、f(x)是周期函數(shù)
D、f(x)的值域?yàn)閇-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)在圓x2+(y-1)2=1上,求(x-2)2+y2的最小值,
y+2
x+1
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為12cm,弧長(zhǎng)為8πcm的弧所對(duì)的圓心角為α,寫(xiě)出與角α終邊相同的角的集合A,并判斷A是否為B={θ|θ=
2
+
π
6
,k∈Z}的真子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在區(qū)間[-1,6]上等可能的任取一實(shí)數(shù)a,則使得函數(shù)f(x)=x3-3x-a有三個(gè)相異的零點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列三個(gè)命題:
①一條直線(xiàn)垂直于一個(gè)平面內(nèi)的三條直線(xiàn),則這條直線(xiàn)和這個(gè)平面垂直;
②一條直線(xiàn)與一個(gè)平面內(nèi)的任何直線(xiàn)所成的角相等,則這條直線(xiàn)和這個(gè)平面垂直;
③一條直線(xiàn)在平面內(nèi)的射影是一點(diǎn),則這條直線(xiàn)和這個(gè)平面垂直.
其中正確的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)拋擲三枚硬幣,計(jì)算:
(1)恰有一枚出現(xiàn)正面的概率;
(2)至少有兩枚出現(xiàn)正面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題,能得出直線(xiàn)m與平面α平行的是(  )
A、直線(xiàn)m與平面α內(nèi) 所有直線(xiàn)平行
B、直線(xiàn)m 與平面α內(nèi)無(wú)數(shù)條直線(xiàn)平行
C、直線(xiàn)m與平面α沒(méi)有公共點(diǎn)
D、直線(xiàn)m與平面α內(nèi)的一條直線(xiàn)平行

查看答案和解析>>

同步練習(xí)冊(cè)答案