18.如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點(diǎn)D若$\frac{1}{2}$≤e≤$\frac{\sqrt{2}}{2}$,求$\frac{|C{F}_{2}|}{|{F}_{2}D|}$的取值范圍.

分析 (1)由CF1⊥x軸.則C(-c,$\frac{^{2}}{a}$),根據(jù)直線的斜率相等,即可求得b=c,利用離心率公式即可求得e的值;
(2)根據(jù)向量的坐標(biāo)運(yùn)算,求得D點(diǎn)坐標(biāo),代入橢圓方程,求得e2=$\frac{{λ}^{2}-1}{({λ}^{2}+4λ+3)}$=1-$\frac{4}{λ+3}$,由離心率的取值范圍,即可求得λ的取值范圍.

解答 解:(1)橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2c,
由CF1⊥x軸.則C(-c,y0),y0>0,
由C在橢圓上,則y0=$\frac{^{2}}{a}$,則C(-c,$\frac{^{2}}{a}$),
由OC∥AB,則-$\frac{^{2}}{ac}$=kOC=kAB=-$\frac{a}$,則b=c,
e=$\frac{c}{a}$=$\frac{c}{\sqrt{^{2}+{c}^{2}}}$=$\frac{\sqrt{2}}{2}$,
e的值$\frac{\sqrt{2}}{2}$;
(2)設(shè)D(x1,y1),設(shè)$\overrightarrow{C{F}_{2}}$=λ$\overrightarrow{{F}_{2}D}$,
C(-c,$\frac{^{2}}{a}$),F(xiàn)2(c,0),
故$\overrightarrow{C{F}_{2}}$=(2c,-$\frac{^{2}}{a}$),$\overrightarrow{{F}_{2}D}$=(x1-c,y1),
由$\overrightarrow{C{F}_{2}}$=λ$\overrightarrow{{F}_{2}D}$,則2c=λ(x1-c),-$\frac{^{2}}{a}$=λy1,則D($\frac{λ+2}{λ}$c,-$\frac{^{2}}{λa}$),
由點(diǎn)D在橢圓上,則($\frac{λ+2}{λ}$)2e2+$\frac{^{2}}{{λ}^{2}{a}^{2}}$=1,整理得:(λ2+4λ+3)e22-1,
由λ>0,e2=$\frac{{λ}^{2}-1}{({λ}^{2}+4λ+3)}$=$\frac{λ-1}{λ+3}$=1-$\frac{4}{λ+3}$,
由$\frac{1}{2}$≤e≤$\frac{\sqrt{2}}{2}$,則$\frac{1}{4}$≤e2≤$\frac{1}{2}$,則$\frac{1}{4}$≤1-$\frac{4}{λ+3}$≤$\frac{1}{2}$,
解得:$\frac{7}{3}$≤λ≤5,
∴$\frac{|C{F}_{2}|}{|{F}_{2}D|}$的取值范圍[$\frac{7}{3}$,5].

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單幾何性質(zhì),橢圓的離心率公式,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x-y,x+y),則B中元素(-1,2)在f作用下的原像是( 。
A.$({\frac{1}{2},\frac{3}{2}})$B.(-3,1)C.(-1,2)D.$({\frac{3}{2},\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+an=2n+1,
(1)寫出a1,a2,a3并猜想an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若過點(diǎn)(1,1)的直線與圓x2+y2-6x-4y+4=0相交于A,B兩點(diǎn),則|AB|的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)系xOy中,設(shè)A,B,C是圓x2+y2=1上相異三點(diǎn),若存在正實(shí)數(shù)λ,? 使得 $\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,則λ2+(?-3)2的取值范圍是( 。
A.[0,+∞)B.(2,+∞)C.(2,8)D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左焦點(diǎn)的直線交雙曲線的左支于A、B兩點(diǎn),且|AB|=6,這樣的直線可以作2條,則b的取值范圍是(  )
A.(0,2]B.(0,2)C.(0,$\sqrt{6}$]D.(0,$\sqrt{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,圓C的方程為(x-1)2+y2=$\frac{1}{2}$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)M的極坐標(biāo)為(2,θ),過點(diǎn)M斜率為1的直線交圓C于A,B兩點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求|MA|•|MB|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)當(dāng)x∈[$\frac{π}{6}$,$\frac{7π}{6}$]時(shí),求函數(shù)y=3-sin x-2cos2x的最大值.
(2)已知5sinβ=sin(2α+β),tan(α+β)=$\frac{9}{4}$,求tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=λ|$\overrightarrow{a}$|,若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為120°,則正數(shù)λ的值為(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案