【題目】如圖,四棱錐S﹣ABCD的底面是正方形,每條側棱的長都是底面邊長的 倍,P為側棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大。

【答案】
(1)解:連BD,設AC交BD于O,由題意SO⊥AC.

在正方形ABCD中,AC⊥BD,

所以AC⊥平面SBD,得AC⊥SD


(2)解:設正方形邊長a,則SD= a.

又OD= a,所以∠SDO=60°,

連OP,由(Ⅰ)知AC⊥平面SBD,

所以AC⊥OP,且AC⊥OD,

所以∠POD是二面角P﹣AC﹣D的平面角.

由SD⊥平面PAC,知SD⊥OP,

所以∠POD=30°,

即二面角P﹣AC﹣D的大小為30°


【解析】(1)連BD,設AC交BD于O,則SO⊥AC,在正方形ABCD中,AC⊥BD,根據(jù)線面垂直的判定定理可知AC⊥平面SBD,SD平面SBD,根據(jù)線面垂直的性質可知AC⊥SD.(2)設正方形邊長a,求出SD、OD,得到∠SDO,連OP,根據(jù)(Ⅰ)知AC⊥平面SBD,則AC⊥OP,且AC⊥OD,根據(jù)二面角平面角的定義可知∠POD是二面角P﹣AC﹣D的平面角,然后在三角形POD求出此角即可.
【考點精析】解答此題的關鍵在于理解空間中直線與直線之間的位置關系的相關知識,掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在今年內同時出售變頻空調機和智能洗衣機,由于這兩種產品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實際情況(如資金、勞動力)確定產品的月供應量,以使得總利潤達到最大.已知對這兩種產品有直接限制的因素是資金和勞動力,通過調查,得到關于這兩種產品的有關數(shù)據(jù)如表:
試問:怎樣確定兩種貨物的月供應量,才能使總利潤達到最大,最大利潤是多少?

資金

單位產品所需資金(百元)

空調機

洗衣機

月資金供應量(百元)

成本

30

20

300

勞動力(工資)

5

10

110

單位利潤

6

8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[﹣π,π]上的最大值和最小值及取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設l1l2的交點為P,當k變化時,P的軌跡為曲線C.

(1)寫出C的普通方程;

(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3ρ(cosθ+sinθ) =0,Ml3C的交點,求M的極徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=48x﹣x3 , x∈[﹣3,5]
(1)求單調區(qū)間;
(2)求最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形, , 相交于點, 平面 平面, , 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的正弦值;

(Ⅲ)當直線與平面所成角為時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求a;

(2)證明:存在唯一的極大值點,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,向量 =(sinα,1), =(cosα,0), =(﹣sinα,2),點P是直線AB上的一點,且 =
(1)若O,P,C三點共線,求tanα的值;
(2)在(Ⅰ)條件下,求 +sin2α的值.

查看答案和解析>>

同步練習冊答案