【題目】已知不等式|x﹣3|+|x﹣4|<2a.
(1)若a=1,求不等式的解集;
(2)若已知不等式有解,求a的取值范圍.

【答案】
(1)解:|x﹣3|+|x﹣4|<2,

①x≤3,則3﹣x+4﹣x<2,x> ,∴ <x≤3

②若3<x<4,則1<2,∴3<x<4.…(4分)

③若x≥4,則x﹣3+x﹣4<2,x< ,∴4≤x<

綜上,不等式的解集為( ,


(2)解:|x﹣3|+|x﹣4|≥|x﹣3﹣x+4|=1,

∵不等式有解,∴2a>1,∴a> .)


【解析】(1)分類討論,即可求不等式的解集; (2)由條件利用絕對值三角不等式求得|x﹣3|+|x﹣4|≥|x﹣3﹣x+4|=1,結(jié)合題意可得a的范圍.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:

(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式x2﹣(a+1)x+a>0(其中a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若對于在定義域內(nèi)存在實數(shù)滿足,則稱函數(shù)為“局部奇函數(shù)”.若函數(shù)是定義在上的“局部奇函數(shù)”,則實數(shù)的取值范圍是( 。

A. [1﹣,1+ B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的解析式滿足
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并加以證明;
(3)當(dāng)a=1時,記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+1|+|x|(x∈R)的最小值為a.
(1)求a;
(2)已知兩個正數(shù)m,n滿足m2+n2=a,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖像在處的切線垂直于直線,求實數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(25,35](35,45],由此得到樣本的重量頻率分布直方圖(如圖).

1)求的值;

2)從盒子中隨機抽取3個小球,其中重量在[5,15]內(nèi)的小球個數(shù)為X,求X的分布列和數(shù)學(xué)期望. (以直方圖中的頻率作為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬訂的價格進行試銷得到如下數(shù)據(jù):

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

92

82

83

80

75

68


(1)求出y關(guān)于x的線性回歸方程 .其中 =250
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(I)中的關(guān)系,且該產(chǎn)品的成本是4元每件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案