如果雙曲線上一點到它的右焦點距離為,那么 到它右準線距離為
A.B.C.D.
C

試題分析:由雙曲線.設到它右準線的距離是,再根據(jù)雙曲線的第二定義得
點評:根據(jù)雙曲線的第二定義:到焦點與到相應準線的距離比等于離心率,可由離心率及P到右焦點的距離得到P到右準線的距離.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

點P是圓上的一個動點,過點P作PD垂直于軸,垂足為D,Q為線段PD的中點。
(1)求點Q的軌跡方程。
(2)已知點M(1,1)為上述所求方程的圖形內(nèi)一點,過點M作弦AB,若點M恰為弦AB的中點,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點,長軸長6,設直線交橢圓,兩點,求線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓的兩個焦點,過F2的直線交橢圓于點A、B,若,
 ( )
A. 10
B. 11
C. 9
D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)設,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知拋物線的頂點為坐標原點,焦點在軸上. 且經(jīng)過點,
(1)求拋物線的方程;
(2)若動直線過點,交拋物線兩點,是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的準線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為雙曲線的左、右焦點.
(Ⅰ)若點為雙曲線與圓的一個交點,且滿足,求此雙曲線的離心率;
(Ⅱ)設雙曲線的漸近線方程為到漸近線的距離是,過的直線交雙曲線于A,B兩點,且以AB為直徑的圓與軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知拋物線, 過點引一弦,使它恰在點被平分,求這條弦所在的直線的方程.

查看答案和解析>>

同步練習冊答案