在等腰直角三角形ABC中,在斜邊AB上任取一點M,則AM的長大于AC的長的概率為
1-
2
2
1-
2
2
分析:欲求AM的長大于AC的長的概率,先求出M點可能在的位置的長度,AC的長度,再讓兩者相除即可.
解答:解:在等腰直角三角形ABC中,設AC長為1,則AB長為
2
,
在AB上取點D,使AD=1,則若M點在線段DB上,滿足條件.
∵|DB|=
2
-1,|AB|=
2

∴AM的長大于AC的長的概率為
2
-1
2
=1-
2
2

故答案為:1-
2
2
點評:本題考查幾何概型.在利用幾何概型的概率公式來求其概率時,幾何“測度”可以是長度、面積、體積、角度等,其中對于幾何度量為長度,面積、體積時的等可能性主要體現(xiàn)在點落在區(qū)域Ω上任置都是等可能的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,C=90°,直角邊BC在直線2x+3y-6=0上,頂點A的坐標是(5,4),求邊AB 和AC所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,D是斜邊BC的中點,如果AB的長為2,則(
AB
+
AC
)•
AD
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,∠A=
π
2
,AB=6,E為AB的中點,
AC
=3
AD
,則
BD
CE
=_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,AB=AC=4,點P是邊AB上異于A,B的一點,光線從點P出發(fā),經(jīng)BC,CA發(fā)射后又回到點P(如圖).若光線QR經(jīng)過△ABC的重心(三角形三條中線的交點),則AP=
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,AC=BC=
6
,在斜邊AB上任取一點P,則CP≤2的概率為
3
3
3
3

查看答案和解析>>

同步練習冊答案