(2006•海淀區(qū)二模)若f(x)=ax2+bx+c(a>0,x∈R),f(-1)=0,則“b<-2a”是“f(2)<0”的( 。
分析:利用充分條件和必要條件的定義進行推理判斷.
解答:解:因為f(x)=ax2+bx+c(a>0,x∈R),f(-1)=0,
所以f(-1)=a-b+c=0.所以c=b-a.
則f(x)=ax2+bx+c=ax2+bx+b-a,
若b<-2a,則f(2)=4a+2b+b-a=3(a+b)<3(a-2a)=-3a<0成立.
若f(2)<0,因為f(2)=4a+2b+b-a=3(a+b)<0,則a+b<0.
當(dāng)a=1,b=-2時,滿足a+b<0,但b=-2a=-2,所以b<-2a不成立.
所以“b<-2a”是“f(2)<0”充分不必要條件.
故選B.
點評:本題主要考查充分條件和必要條件的應(yīng)用,考查了二次函數(shù)的表達式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)二模)等差數(shù)列{an}的公差d<0,且a2•a4=12,a2+a4=8,則數(shù)列{an}的通項公式是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)二模)設(shè)全集U=R,集合M={x|x>0},N={x|x2≥x},則下列關(guān)系中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)二模)等比數(shù)列{an}前3項依次為:1,a,
1
16
,則實數(shù)a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)二模)函數(shù)g(x)的圖象與函數(shù)f(x)=lg(x-1)的反函數(shù)的圖象關(guān)于原點對稱,則函數(shù)g(x)圖象大致為( 。

查看答案和解析>>

同步練習(xí)冊答案