已知圓錐的表面積為9πcm2,且它的側(cè)面展開圖是一個半圓,則圓錐的底面半徑為(  )
A、
3
2
2
cm
B、3
2
cm
C、
3
cm
D、2
3
cm
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺),棱錐的結(jié)構(gòu)特征
專題:計算題,空間位置關(guān)系與距離
分析:設(shè)出圓錐的底面半徑,由它的側(cè)面展開圖是一個半圓,分析出母線與半徑的關(guān)系,結(jié)合圓錐的表面積為9π,構(gòu)造方程,可求出半徑.
解答: 解:設(shè)圓錐的底面的半徑為r,圓錐的母線為l,
則由πl(wèi)=2πr得l=2r,
而S=πr2+πr•2r=3πr2=9π
故r2=3
解得r=
3
cm.
故選:C.
點評:本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為5的菱形ABCD中,AC=8,現(xiàn)沿對角線BD把△ABD折起,折起后使∠ADC的余弦值為
9
25

(1)求證:平面ABD⊥平面CBD;
(2)若M是AB的中點,求三棱錐A-MCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-4sinxsin(x-
π
3
),在△ABC中,角A,B,C所對的邊分別是a,b,c,且f(A)=1,b+c=3.
(1)求角A的大小;
(2)求邊BC上高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,過點A、C及DD1延長線上一點G作出它的截面,其中D1G=
1
2
DD1,證明該截面為梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高一年級期末考試的學(xué)生中抽出20名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100],然后畫出如下所示頻率分布直方圖,但是缺失了第四組[70,80)的信息.觀察圖形的信息,回答下列問題.
(1)求第四組[70,80)的頻率;
(2)從成績是[50,60)和[60,70)的兩段學(xué)生中任意選兩人,求他們在同一分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,異面直線BD1與CD所成角的正弦值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷并證明函數(shù)y=2 x2+2x+3的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,AB=1,BC=2,PA=2,E、F分別是AB、PC的中點.
(1)求證:EF∥平面PAD;
(2)求證:CD⊥EF;
(3)求EF與平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-cos2x-2asinx,(x∈[0,π],a∈R),求函數(shù)f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案