【題目】以下4個命題:

1)三個點可以確定一個平面;

2)平行于同一個平面的兩條直線平行;

3)拋物線對稱軸為軸;

4)同時垂直于一條直線的兩條直線一定平行;

正確的命題個數(shù)為__

【答案】0

【解析】

1)由平面的性質(zhì)可得:三個不共線的點可以確定一個平面.

2)由空間中的兩條直線的位置關(guān)系可得:這兩條直線可能平行、可能異面、可能相交.

3)由拋物線的性質(zhì)可得:拋物線對稱軸為軸.

4)空間中的兩條直線的位置關(guān)系可得:這兩條直線可能平行、可能異面、可能相交.

1)由平面的性質(zhì)可得:三個不共線的點可以確定一個平面,所以1)錯誤.

2)由空間中的兩條直線的位置關(guān)系可得:平行于同一個平面的兩條直線可能平行、可能異面、可能相交,所以2)錯誤.

3)由拋物線的性質(zhì)可得:拋物線對稱軸為軸,所以3)錯誤.

4)空間中的兩條直線的位置關(guān)系可得:在空間中同時垂直于一條直線的兩條直線可能平行、可能異面、可能相交,所以4)錯誤.

故答案為:0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為菱形,對角線的交點為,四邊形為梯形, .

(Ⅰ)若,求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若, , ,求與平面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方形中, , 中點(圖1).將沿折起,使得(圖2)在圖2中:

(1)求證:平面 平面;

(2)在線段上是否存點,使得二面角為大小為,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點.

1)求證: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ax3lnxa為常數(shù))與函數(shù)gx)=xlnxx1處的切線互相平行.

1)求a的值;

2)求函數(shù)yfx)在[12]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.

(1)若,求曲線的方程;

(2)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;

3)對于(1)中的曲線,若直線過點交曲線于點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人有樓房一幢,室內(nèi)總面積為,擬分割成兩類房間作為旅游客房,有關(guān)的數(shù)據(jù)如下表:

大房間

小房間

每間的面積

每間裝修費

6000

每天每間住人數(shù)

5

3

每天每人住宿費

80

100

如果他只能籌款80000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得的住宿總收入最多?每天獲得的住宿總收入最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達關(guān)口……” 那么該人第一天走的路程為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下.

(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調(diào)研,求甲商家被抽到的概率;

(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達時間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?

查看答案和解析>>

同步練習(xí)冊答案