【題目】如圖,在三棱臺(tái)ABO﹣A1B1O1中,側(cè)面AOO1A1與側(cè)面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)證明:AB1⊥BO1;
(2)求直線AO1與平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
【答案】
(1)證明:由題設(shè)知OA⊥OO1,且平面AOO1A1⊥平面OBB1O1,
平面AOO1A1∩平面OBB1O1=OO1,
則OA⊥平面OBB1O1,所以O(shè)A⊥OB,OA⊥BO1,
又因?yàn)? .O1B1=1,OB=3,
所以∠OO1B=60°,∠O1OB1=30°,
從而OB1⊥BO1,又因?yàn)镺A⊥BO1,OB1∩OA=O,
故BO1⊥平面AOB1,又AB1平面AOB1,故AB1⊥BO1
(2)解:以O(shè)為原點(diǎn),OA、OB、OO1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,
如圖,則A(3,0,0),B(0,3,0),B1(0,1, ),O1(0,0, ).
由(1)知BO1⊥平面OA B1,從而 是平面OA B1的一個(gè)法向量.
, ,
設(shè)直線AO1與平面AOB1所成的角為α,
.cosα= = ,
tanα= = .
∴直線AO1與平面AOB1所成的角的正切值為
(3)解:由(II)知 是平面OA B1的一個(gè)法向量.且 ,
設(shè) 是平面O1A B1的一個(gè)法向量,
由 ,得 .
設(shè)二面角O﹣AB1﹣O1的大小為,
則cosθ=cos<, >=
即二面角O﹣AB1﹣O1的余弦值是
【解析】(1)推導(dǎo)出OA⊥OB,OA⊥BO1 , OB1⊥BO1 , OA⊥BO1 , 從而B(niǎo)O1⊥平面AOB1 , 由此能證明AB1⊥BO1 . (2)以O(shè)為原點(diǎn),OA、OB、OO1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,利用向量法能求出直線AO1與平面AOB1所成的角的正切值.(3)求出平面OA B1的一個(gè)法向量和平面O1A B1的一個(gè)法向量,利用向量法能求出二面角O﹣AB1﹣O1的余弦值.
【考點(diǎn)精析】本題主要考查了空間角的異面直線所成的角的相關(guān)知識(shí)點(diǎn),需要掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是 . (寫出所有正確說(shuō)法的序號(hào))
①若p是q的充分不必要條件,則p是q的必要不充分條件;
②命題“x∈R,x2+1>3x”的否定是“x∈R,x2+1<3x”;
③設(shè)x,y∈R.命題“若xy=0,則x2+y2=0”的否命題是真命題;
④若
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求證: ≤an<an+1≤n+2;
(2)求證: + + +…+ <1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知存在常數(shù),那么函數(shù)在上是減函數(shù),在上是增函數(shù),再由函數(shù)的奇偶性可知在上是增函數(shù),在上是減函數(shù).
(1)判斷函數(shù)的單調(diào)性,并證明:
(2)將前述的函數(shù)和推廣為更為一般形式的函數(shù),使和都是的特例,研究的單調(diào)性(只須歸納出結(jié)論,不必推理證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部
競(jìng)選.
(Ⅰ)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅱ)在男生甲被選中的情況下,求女生乙也被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)上的點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為4,以橢圓C的短軸為直徑的圓O經(jīng)過(guò)兩個(gè)焦點(diǎn),A,B是橢圓C的長(zhǎng)軸端點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程和圓O的方程;
(2)設(shè)P、Q分別是橢圓C和圓O上位于y軸兩側(cè)的動(dòng)點(diǎn),若直線PQ與x平行,直線AP、BP與y軸的交點(diǎn)即為M、N,試證明∠MQN為直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,命題p:x∈[-2,-1],x2-a≥0,命題q:.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a1 , a3 , a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項(xiàng)的和,則 (n∈N+)的最小值為( )
A.4
B.3
C.2 ﹣2
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com